
Data Lineage in High-Performance
Computing Environments

The authors of the presentation:
Mateusz Tykierko, Ula Lukierska

WCSS

• Wroclaw Centre for Networking and Supercomputing is organization unit of
Wroclaw University of Science and Technology.

• WCSS was established on 21st of December 1994

• Origins date back to the Wrocław University of Technology Computing Centre,
founded in 1972.

• 70+ staff

WCSS

Main tasks:

• operation and development of the Wrocław Academic Computer Network
(WASK);

• operation and development of high performance computing services (HPC);

• operation and development of network services for Polish scientific community,
industry and public sector

• operation and development of IT security services

In the context of data systems,
data lineage helps answer questions like:

•Where did this data come from?
•How was it transformed along the way?
•Who accessed or modified it?
•What decisions were made based on this data?

Imagine you're tracking the history of a data from its initial input (input file)to its final
form(output file).
Data lineage is like tracing that dataset's journey step by step.
You start by identifying the original data sources (like input files),
then follow each processing step (like algorithms or transformations- JOB or TASK
via RunEvent) until you reach the final output (a report or analysis in output file).

the concept of DATA LINEAGE

Data lineage is essential for effective data stewardship because it provides a clear & traceable view of how data
is used within an organization with a focus on:

• Data Provenance by providing a detailed account of where the data originated, how it has been processed, and
where it ends up.

• Tracking&Transparency by documenting the flow of data through various systems, applications, and processes.
/monitor data movements, identify bottlenecks/

• Compliance&Regulation by documenting data lineage, organizations can demonstrate compliance with
regulatory requirements

• Data Governance: by providing visibility into data flows, dependencies, relationships, it allows to establish and
enforce policies, standards, and controls around data usage

• Auditability&Accountability: by providing a clear trail of how data is collected, processed, and used. This trail
allows organizations to trace back and verify data handling practices for internal and external audits.

Data LINEAGE –help managing & overseeing the use, integrity, security of data

Data Collection and Preprocessing: The lab collects raw genomic data (INPUT DATA) from
various sources, such as DNA sequencing machines or public databases.

This data is then preprocessed (ONE JOB)to remove noise, errors, and irrelevant information,
ensuring high-quality input(output – can be input for another JOB) for further
analysis(another JOB).

User case: Lab data lifecycle

Source image: https://marquezproject.ai/about

• Genomic Analysis: Scientists perform various analyses(JOBS)on the preprocessed genomic data to extract
meaningful insights.

• Data Lineage in Analysis: track the source of data used in each step. (if a particular genetic variant is identified
as significant, scientists need to trace back to the original data source)

• Publication &Collaboration: Data lineage helps in providing integrity, transparency,& reproducibility
of data/research by clearly documenting the data sources, preprocessing methods, and analysis techniques
used.
It helps in facilitating collaboration&knowledge sharing within the scientific community.

• Reproducibility: Other research teams or collaborators may want to replicate or build upon the findings
of the science lab.

User case: Lab data lifecycle

• Lineage denotes the provenance of data, including
its origins, transformations, and movements throughout Data lifecycle.

• In the context of lineage, a job typically refers to a specific task or process that
manipulates or interacts with data. This could include data processing tasks such as data
extraction, transformation, loading (ETL), data analysis, model training

• The lineage of a job would then describe the relationship between the input data, the job
itself, and the resulting output data, detailing how the data is transformed or affected by
the job's execution.

OpenLineage is an Open Standard for lineage metadata collection designed to
record metadata for a job in execution

OpenLineage defines a generic model of dataset, job, run entities uniquely identified using
consistent naming strategies.

Data Lineage - job

Question

How can OpenLineage be utilized in an HPC environment?

OpenLineage Ecosystem Backend/Producers Data Integration

Compatibility data sources are
known to work with each
integration ex.g Airflow

Source image: https://openlineage.io/docs

Polish HPC resources - 2023

CI TASK
TRYTON+
634 nodes, 30 432 cores, 166 TB RAM,

2,82 PFLOPS

TRYTON
1607 nodes, 38 568 cores, 218 TB RAM

1,79 PFLOPS

ICM
Okeanos
1084 nodes, 26 016 cores, 138TB RAM

1,08PFLOS

Topola
223 nodes, 6 244 cores, 18TB RAM

0,49 PFLOPS

NCBJ
CIS
31 640 cores, 183TB RAM

1,05 PFLOS

WCSS
Bem2
506 nodes, 24 288 cores, 141 TB RAM, GPU A100

2,2PFLOPS

Cyfronet
Ares
788 nodes, 37 824 cores, 200 TB RAM,
9 nodes 8xGPU V100

4,0 PFLOPS

Athena
7,7PFLOPS

PCSS
ALTAIR
1320 nodes, 63 360 cores, 300 TB RAM, 9 nodes
8xGPU V100

5,9 PFLOPS

HPC centers

User jobs

Scheduler

Queue

Compute node

Compute node

Compute node

NetworkStorgage space

HPC cluster

• Each Run State Update can include detail about the Job
A run is a particular instance of a job. with a unique identifier /run uuid/, that helps unite the events that represent the changes
of state through time.

• Jobs are identified by a unique name within a namespace.
Jobs are expected to evolve over time and their changes can be captured through Run State Updates.
Job is a process that consumes or produces Datasets. ex.g Python script is the Job. or Rscript.R ,sub-gaussian

• A facet is an atomic piece of metadata attached to one of the core entities.

OpenLineage CoreModel

Image src : https://openlineage.io/docs

Key OpenLineage Concepts

A job is the highest level of abstraction, and represents some type of process that produces datasets.
A dataset is an abstract representation of data.

All jobs have state. That is, they progress and change through time, every run begins with a START state and ends with a
COMPLETE, ABORT, or FAIL state.

Finally facets are additional metadata
that can be attached to either a job, dataset, or run
to further describe these objects.

Run cycle is likely to have at least two Run State
Updates

Usually, the first Run State for a Job would be START
&the last would be COMPLETE.

How is a job’s namespace derived?

Each execution of job is captured
as a RunEvent with corresponding metadata.

A Run event identifies the Job it is an instance
of by providing the job’s unique identifier.

The Job identifier is composed of a Namespace
and a Name.

The Namespace is the root of the naming hierarchy.

The job name is constructed to identify the job within that namespace.

Jobs and Datasets are in their own namespaces.

• Job namespaces are related to their schedulers.

• The namespace for a dataset is the unique name for its datasource

NAMING - is key to the production of useful lineage

Marquez is an LF AI & DATA Foundation project to collect, aggregate,
and visualize a data ecosystem's metadata.

It is the reference implementation of the OpenLineage API
centralizes dataset lifecycle management

MARQUEZ visualize a data ecosystem's metadata

Input files Jobs output files

Source image: https://marquezproject.ai/about

OpenLineage the same Job namespace Different Job name

The decision of what will count as a namespace and
what as a name is a matter of choice – grant, software,account, team
We can specify which software we use in a Documentation facet of the job

OpenLineage different Jobs- NAMESPACE

Different Namespaces – Grants, Users, Account, project Number Id but the same NAME JOB (the
computational parameters and the job script)

Job namespces
& name

Input files output files

• Different INPUT data (different namespaces) and Output files (the same namespace)

the same JOB –namespace &name

the challenges of collecting lineage metadata from schedulers
HPC queuing systems (the most used)SLURM lack native/generic integration
with openlineage system (It’d allow for Dataset visualization Table/Column-level lineage)

OpenLineage Scope/Ecosystm

Image src: https://openlineage.io/docs

Example –subscript PARAMETERS

Which parameters must the user provide/set, and which can be automatically retrieved from
environmental variables from the Slurm system regarding the job ?

• REQUEST BODY SCHEMA: application/json Record a single EVENT required:

Send an RunEvent > API required = fields that cannot be null

QUESTION which fields can be automatically retrieved from environmental variables from the SLURM
system regarding the job ?

• runId: UUID format "870492da-ecfb-4be0-91b9-9a89ddd3db90
SLURM_JOBID? 2588280
SLURM_TASK_PID 1758804

• eventType: "START|RUNNING|COMPLETE|ABORT|FAIL|OTHER / If eventType is null - default OTHER
It is required to issue 1 START event and 1 of [COMPLETE, ABORT, FAIL] event per run.
Additional events with OTHER eventType can be added to the same run.
SLURM The typical states are PENDING, RUNNING, SUSPENDED, COMPLETING, COMPLETED.

• EventTime ISO 8601 2024-03-25T09:48:06Z
(conversion from Slurm default format : Unixtimestamp 1711376005

• Job: Namespace/name $SLURM_JOB_USER,$SLURM_JOB_ACCOUNT, $SLURM_OB_QOS

• Input//Output Namespace/name $SLURM_SUBMIT_DIR

• „_producer": "https://github.com/OpenLineage/OpenLineage/blob/v1-0-0/client",

• "schemaURL": "https://openlineage.io/spec/1-0 5/OpenLineage.json#/definitions/RunEvent"

• producer value is included in an OpenLineage request as a way to know how the metadata was generated.
It is a URI that links to a source code SHA or the location where a package can be found.

SLURM envs OpenLinege Facets

For example Run Facets Error

MessageNominal Time Facet = start/end time
of the run. The nominal usually means the
time the job run was expected to run (a
scheduled time)
No such SLURM env variable exists for the time
requested. Within the submission script, you
can query the Slurm controller for the
information with squeue

TIME=$(squeue -j $SLURM_JOB_ID -h --Format
TimeLimit)

For example Job Facets
SQL/Ownership/Documentation

Job Type BUT only
SPARK/AIRFLOW/FLINK/DBT
what about Slurm

• SLURM has limited support for data lineage for general-purpose
computing

• Namespace and workflow definition are crucial – define in DMP

• Artifacts from SLURM can be used after some tranfromation

• It is possible to provide limited lineage data for every job using job prolog
and epilog

• Most of the work has to be done by the user

SUMMARY

Thank you for your attention.

Image sources:
https://openlineage.io/docs
https://openlineage.io/docs/spec/facets/run-facets/nominal_time
https://marquezproject.ai/about
https://slurm.schedmd.com/documentation.html

The authors of the presentation:
Mateusz Tykierko,
Ula Lukierska

