
Large-Scale Machine Learning on Supercomputers: 
Challenges and Opportunities

Piotr 
Bielak

Jakub Binkowski Denis 
Janiak 

Mateusz 
Gniewkowski



Challenges 



Memory Constraints

Large language models require massive amounts of memory for both storing the model 
parameters and processing large batches of data during training. On a single machine, 
memory constraints can become a bottleneck, especially for models with billions or trillions 
of parameters.



AI and Memory Wall Gholami, Amir and Yao, Zhewei and Kim, Sehoon and Mahoney, Michael W, and Keutzer, Kurt



Computational Power

Training large language models is computationally intensive, requiring significant processing 
power for tasks such as gradient computation and optimization. Single machines may not 
have sufficient computational resources to efficiently train these models within a reasonable 
timeframe.



AI and Memory Wall Gholami, Amir and Yao, Zhewei and Kim, Sehoon and Mahoney, Michael W, and Keutzer, Kurt

NVIDIA A100 delivers 312 TFLOPS, MI250X -  383 TFLOPS  



How to solve the above?

SUPERCOMPUTER!



But there are new challenges when using supercomputer…



Parallelization Efficiency

Supercomputers typically consist of multiple interconnected nodes, each with its own 
processors and memory. Efficiently parallelizing the training of LLMs across these nodes 
while minimizing communication overhead and ensuring load balancing is a significant 
challenge. Scaling training to thousands of nodes without sacrificing efficiency is non-trivial.



Data parallelism - datasets are broken into subsets which are processed in batches on different 
GPUs using the same model. The results are then combined and averaged in one version of the 
model.

Distributed data parallelism - enables you to perform data parallelism across GPUs and physical 
machines and can be combined with model parallelism.

Model parallelism - a single model is broken into segments with each segment run on different 
GPUs. The results from the segments are then combined to produce a completed model.

Main bottleneck: communication and 
synchronization overhead



Resource Management

Supercomputers are shared resources used by multiple users and projects simultaneously. 
Managing resources such as compute nodes, memory, and interconnect bandwidth 
becomes more complex when training large language models. Allocation policies, job 
scheduling, and optimizing resource utilization are crucial for maximizing throughput and 
minimizing wait times for users.

Tldr; memory, storage, queues



Opportunities



Training large-scale language models



Benchmarking and new methods



Large-scale computations vs. sustainability



Wayback Machine
(Hackathon LUMI and our experiences)

Benchmark of LLMs for Polish language: NVIDIA vs AMD



1. Building an image
https://github.com/CLARIN-PL/klajster

Remarks:
1. There should be possibility to build images using LUMI server
2. It is probably possible to create a job for a cluster to do exactly that

https://github.com/CLARIN-PL/klajster


2. Running jobs
1. Running jobs is handled via DVC (Data Version Control)
2. The code on the right generates X jobs with different configurations
3. Most of the magic behind multiple nodes and multiple GPUs is 

handled using PyTorch-Lightning



2. Running jobs

Remarks – Cool, but several issues:

1. Using python3.9 from a container causes SINGULARITY_BIND 
variable to be set inside any job called from python 
(therefore “export SINGULARITY_BIND=;” )

The problem does not occur with natively installed Python3.6, but its 
version is too old ;(



2. Running jobs

2.     There are few problems when using slower storage with PyTorch (even after 
setting MIOPEN_USER_DB_PATH and MIOPEN_CUSTOM_CACHE_DIR) – dataloaders 
often time-out. Using SSD drives solved the issue.

We run the code from the `/flash/project_465000858/` directory!



Let’s sum up our work



Which of your goals did you accomplish?

Add RetNet to LEPISZCZE
○ RetNet with 300M parameters trained
○ No full integration with LEPISZCZE

Check model scalability by parallelization on a different number of GPUs:
○ Run the benchmark on NVIDIA 
○ Run the benchmark on AMD

Analyze the results 

Profile the models to identify bottlenecks
○ Basic profiling
○ In-depth investigation



What is left to do?

1. Exploration of grid search for hyperparameters to refine public-facing models.
2. Using a larger dataset for RetNet.

a. PoC 🠂 1% of the oscar dataset  
b. 1 % = 200,000 texts
c. https://huggingface.co/datasets/oscar/viewer/unshuffled_original_pl

3. In-depth review of profiling results
a. Try to eliminate model bottlenecks

https://huggingface.co/datasets/oscar/viewer/unshuffled_original_pl


What was the most important change implemented during that week?

● Implementation of multi-node multi-gpu training in the embeddings library
○ LEPISZCZE 🠂 embeddings 🠂 PyTorch-Lightning 🠂 PyTorch
○ PyTorch-Lightning should support such training out-of-the-box…
○ …but the pipeline implementation in “embeddings” was not ready :(
○ Our change allows to scale the LEPISZCZE benchmark to utilize larger compute clusters!

● Training RetNet
○ 128 AMD GPUs
○ First time trained using only Polish corpora
○ RetNet allows for O(1) inference
○ Further downstream evaluation of the trained model should reveal its potential for Polish NLP! 



(How) did your performance improve?



Training AMD (1 node, 1 gpu)



Training NVIDIA (1 node, 1 gpu)



Training AMD (1 node, 4 gpu)



Training NVIDIA (1 node, 4 gpu)



Training AMD (2 node, 16 gpu)



Comparison of number of lower level calls is possible



As expected, result quality is the same



RetNet – learning progress



Thank you for your attention!


