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Ø Ares, Prometheus & Zeus clusters at ACC Cyfronet AGH

Ø available resources

Ø access to clusters/data transfer

Ø Performing calculations

Ø software environment management using Modules/Lmod
Ø batch scripts

Øsequential and parallel runs
Ø efficient usage of SLURM queuing system

Ø Documentation and users' support

Ø Questions and exercises

Ø Zeus & Prometheus as a part of PLGrid Infrastructure

Ø PRACE and EuroHPC (LUMI) - computational opportunities
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Academic Computer Centre Cyfronet AGH

Ø The biggest Polish Academic Computer Centre
Ø 45+ years of experience in IT provision

Ø Centre of excellence in HPC, Grid and Cloud Computing

Ø Home for Ares, Prometheus and Zeus supercomputers

Ø LUMI consortium partner (EuroHPC pre-exascale supercomputer)

Ø Legal status: an autonomous within AGH University of Science and Technology

Ø Staff: >150 , ca. 60 in R&D

Ø Leader of PLGrid: Polish Grid and Cloud Infrastructure for Science 

ØNGI Coordination in EGI e-Infrastructure
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Academic Computer Centre Cyfronet AGH

Prometheus 
Ø 2.4 PFLOPS

Ø 53 568 cores

Ø From 2015 to 2021
1st HPC system in
Poland (440th on Top 500, 38th in 2015)
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Zeus
Ø 374 TFLOPS

Ø 25 468 cores

Ø 1st HPC system in Poland
(from 2009 to 2015, highest 

rank on Top500 – 81st in 2011)

Computing portals and 
frameworks

Ø OneData

Ø PLG-Data

Ø Rimrock

Ø InSilicoLab

Data Centres

Ø 3 independent data centres

Ø dedicated backbone links

Research & Development

Ø distributed computing environments

Ø computing acceleration 

Ø machine learning

Ø software development & optimization

Storage

Ø 60+ PB

Ø hierarchical data management

Computational Cloud

Ø based on OpenStack 

Ares

Ø 4 PFLOPS

Ø 38 112 cores

Ø 267th on Top 500



Network backbone lines

Ø4 main links to achieve maximum reliability
ØEach link with 7x10Gbps capacity
ØAdditional 2x100Gbps dedicated links
ØDirect connection with GEANT scientific network

6



Polish HPC @TOP500 – Nov 2021

ØSupercomputers from Poland
Ø131 – Altair (PSNC) (PLGrid)
Ø267 – Ares (ACC Cyfronet AGH) (PLGrid)
Ø426 – Tryton Plus (TASK)
Ø440 – Prometheus (ACC Cyfronet AGH) – 2.4 Pflops (PLGrid)
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Ø High Performance Computing (HPC) – using supercomputers to solve problems that cannot be 
addressed by regular computes

Ø use vast amount of processors/cores simultaneously

Ø use huge memory allocations
Ø use specialized computation accelerators (GPUs, FPGA, ASIC)

Ø very fast access to data on dedicated high performance storage systems

Ø High Throughput Computing (HTC) – processing as much jobs (individual job could be quite 
simple) as possible using HPC infrastructure

Ø High Performance Data Analysis (HPDA) - using HPC infrastructure to analyse vast amount of 
data

What is HPC? 8



User interface

Queuing system

srun science.bin

Storage

ssh user@pro.cyfronet.pl

sbatch –p plgrid –N 8 –n 32 do_science.sh

High Performance Computing 9



Ø Prometheus consist user interface nodes (UI), service nodes and worker nodes
Ø 2 232 worker nodes (2x Intel Xeon E5-2680v3 processors)

Ø 72 nodes with additional GPPGU (2x nVidia Tesla K40XL)

Ø 3 big memory nodes (2x Intel Xeon Gold 6128, 12 x 3.4 GHz, 768 or 1536 GB)
Ø 4 ML/AI nodes (2 x Intel® Xeon® Gold 5220, 36 x 2.2 GHz, 386 GB, 8 x NVIDIA V100 

SXM2 32GB HBM2) 

Prometheus HPC cluster

Property Prometheus

CPU frequency 2.50 GHz

RAM 128 GB

cores per node 24 

InifiniBand interconnect available, EDR 56 Gb/s

10



Ø Ares consist user interface nodes (UI), service nodes and worker nodes
Ø 788 CPU nodes (2x Intel Xeon Platinum 8268 processors, 48 x 2.9 GHz)

Ø 532 nodes with 192 GB (4GB/core)

Ø 256 nodes with 384 GB (8GB/core)
Ø 9 ML/AI nodes (2 x Intel Xeon Gold 6242, 32 x 2.8 GHz, 384 GB, 8 x NVIDIA V100 

SXM2 32GB HBM2) 

Ares HPC cluster

Property Ares Ares GPU

CPU frequency 2.9 GHz 2.8 GHz

RAM 192/384 GB 384 GB

cores per node 48 32

InifiniBand
interconnect available, HDR 100 Gb/s
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Ø All PLGrid HPC clusters use Linux as OS
Ø CentOS 7 on Prometheus & Zeus

Ø CentOS 8 on Ares

Ø HPC clusters contain

Ø user interface (UI) node(s)
Ø computing nodes (a.k.a worker nodes)

Ø User interface must not be used for computing

Ø Fair share between users tasks and computations provided by queuing system
Ø SLURM on Ares, Prometheus & Zeus

Access to computing clusters 12



Ø User log on user interface (UI) node using SSH protocol

Ø UI names:
Ø login@zeus.cyfronet.pl

Ø login@prometheus.cyfronet.pl (login@pro.cyfronet.pl)

Ø two login nodes: login01 and login02 
Ø login@ares.cyfronet.pl

Ø SSH clients
Ø on Linux and MacOS included in OS

Ø ssh command in terminal

Ø on Windows
Ø PuTTY - http://www.chiark.greenend.org.uk/~sgtatham/putty/

Ø MobaXterm - http://mobaxterm.mobatek.net
Ø copying files and directories

Ø on Linux and MacOS included in OS

Ø scp command in terminal
Ø rsync command in terminal

Ø on Windows
Ø WinSCP - http://winscp.net/

Access to computing clusters 13
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Ø Storage of data – NFS (quite slow, should not be used for heavy I/O calculations)

Ø $HOME – user’s home directory
Ø quota 40 GB

Ø $PLG_GROUPS_STORAGE – additional storage gained through PLGrid grants 
system

Ø Temporary scratch file systems

Ø $SCRATCH – distributed scratch Lustre file system
Ø accessible from all nodes of cluster (including UI)

Ø $TMPDIR and $SCRATCHDIR – unique subdirectories on $SCRATCH 
created for the job at it’s start

Ø To check quota use pro-fs/hpc-fs

Prometheus – file systems 14



Ø Scientific software usually needs specific runtime environment (i.e. additional libraries) 
and sometimes technical knowledge is needed to install them efficiently

Ø Modules and Lmod packages are solutions for loading runtime environments on every 
cluster in PLGrid infrastructure

Ø Advantages

Ø simplicity of preparing software to run efficiently

Ø computation scripts could be transferable between HPC clusters
Ø possibility of concurrent runs of  different versions of software

Ø on hybrid HPC systems transparent switching to most efficient version of 
software

Ø Drawbacks
Ø additional command to remember .-)

Software 15



Ø Load environment for scientific package

Ø module add <module-name> (i.e. module add plgrid/apps/r)

Ø module load <module-name> (i.e. module load plgrid/apps/matlab)
Ø Remove module 

Ø module rm <module-name> (i.e. module rm plgrid/apps/r)
Ø module unload <module-name> (i.e. module unload 

plgrid/apps/matlab)
Ø Listing of all available modules 

Ø module avail
Ø module avail plgrid/tools (only from tools branch)
Ø module avail plgrid/apps/r (all available R versions in plgrid/apps)

Ø module spider python (all available Python versions)

Ø module spider “/r/” (all available R versions, regexp search)
Ø Listing of loaded modules

Ø module list

Software – modules 16



Ø Clearing all loaded modules

Ø module purge
Ø Saving collection of modules for later use, restoring it and listing saved collections

Ø module save [collection]
Ø module restore [collection]
Ø module savelist
Ø module describe [collection]

Ø ml is shorthand for module command
Ø ml = module list
Ø ml <module-name> = module load <module-name>
Ø ml -<module-name> = module unload <module-name>
Ø ml av <string> = module avail <string>

Ø Getting help

Ø module help
Ø ml -h

17Software – modules 



Ø Each software package installed in PLGrid infrastructure has it’s own module

Ø plgrid/<branch>/<software-name>/<version>
Ø Branch kinds

Ø apps - for most of scientific packages 
Ø libs - for software libraries 

Ø tools – for toolkits and helper packages
Ø User’s own modules

Ø module use path – adds path with additional modules

Ø Examples:

Ø plgrid/tools/intel/19.0.5
Ø plgrid/apps/r/3.6.0
Ø plgrid/tools/python/3.6.5
Ø plgrid/apps/relion

https://apps.plgrid.pl/

18Software – modules 
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Ø User interact with SLURM queuing system using commands

Ø sbatch – to submit new job to queue
Ø squeue – gives information about jobs running in queuing system

Ø scancel – deletes jobs from queue
Ø sinfo/scontrol – gives detailed information about queue, job or node

Ø smap – gives graphical information about state of HPC cluster

Ø srun – runs interactive job or step in batch job

Ø Each job has got unique job identifier (jobID)

SLURM queuing system – commands 19



Ø Queuing system
Ø manage all computational task on cluster

Ø monitor available resources

Ø acts as matchmaker between needs of jobs and resources
Ø empowers fair share between different users 

Ø All computational tasks are run as jobs queued in queues and run according to their 
priority and available resources. 

Ø Priority of job depends on
Ø amount of resources obtained by user in computational grant

Ø amount of resources requested by job
Ø maximum wall time of computation is most essential resource

Ø amount of other resources concurrently used by job’s owner

Queuing system 20



Ø HPC clusters available in PLGrid use several kinds of queuing systems

Ø SLURM (http://slurm.schedmd.com)
Ø PBS Pro (http://pbspro.org)

Queuing systems in PLGrid

HPC Centre Cluster Queuing system

ACC Cyfronet AGH

Prometheus SLURM

Zeus SLURM

Ares SLURM

PSNC Eagle/Altair SLURM

TASK Tryton SLURM

WCSS Bem/Bem2 PBS Pro

21
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Ø Command sbatch submits new job in queue

Ø All parameters describing job’s requirements could be included in batch script and given 
to queuing system using command

Ø sbatch [options] script.slurm

Ø Example script

SLURM queuing system – job submission

#!/bin/env bash

# Commands that will be run after start of the job
echo "Computation started on work node: "; 
hostname

module add plgrid/apps/matlab

matlab -nodisplay <matlab.in >matlab.out

22



Ø Commands squeue and hpc-jobs give view of jobs scheduled in queuing system
Ø Jobs States 

Ø PD – queued

Ø R – running
Ø CF – configuring (resources for job are being prepared)

Ø Additional helpful flags 

Ø squeue --user $USER – information about $USER’s jobs
Ø hpc-jobs -j <jobID> – information about specified jobs 

Ø hpc-jobs -N – additional information about information about exec 
nodes

Ø hpc-jobs -q/-r – information about queued (pending)/running jobs only

Ø hpc-jobs –h – help screen
Ø In addition scontrol, sinfo and smap give information about status of cluster

Ø scontrol show job <jobID> – information about <jobID> job
Ø scontrol show node <nodes_list> – information about nodes

SLURM queuing system – job monitoring 23



Ø In SLURM queues are called partitions

Ø scontrol show partitions <patition_name> – detailed information about 
partition

Ø sinfo – lists all available nodes in all partitions

Ø sinfo –p <partition_name> – lists information only about partition
Ø default time in all plgrid* partitions is set to 15 minutes

* - partitions available after request

Partitions max time Information

plgrid-testing 1:00:00 for test runs (small number of jobs)

plgrid-short 1:00:00

plgrid 3-00:00:00

plgrid-large 1-00:00:00 big jobs (18+ nodes)

plgrid-now 12:00:00 interactive runs, max one job on one node

plgrid-long 7-00:00:00 *

plgrid-gpu 3-00:00:00 nodes with GPGPU*

plgrid-gpu-v100 3-00:00:00 nodes with V100 GPGPU*

plgrid-bigmem 3-00:00:00 big mem nodes*

Available partitions 24



Ø SLURM options provide information about job requirements to queuing system. They 
could be

Ø given in command line sbatch [SLURM options] 
Ø included in first lines of batch script with #SBATCH at start of line 

SLURM – example Python job

#!/bin/env bash

# Commands that will be run after start of the job
echo "Computation started on work node: "; hostname

module add plgrid/tools/python

./python-script.py > python.log

25



Ø sbatch command uses various options to  provide queuing system with additional info 
about the job 

Ø -p <partition>, --partition=<partition> defines 
partition

Ø -J <jobname>, --job-name=<jobname> give name to job
Ø -a, --array=<indexes> submit a job array 

Ø --mail-user=<user’s e-mail> setting email for notifications

Ø --mail-type=<type> information when notifications should be send: at 
beginning (BEGIN), end (END) or execution error (FAIL)

Ø -A <grantID>, --account= <grantID> information about 
computational grant (if omitted job use default)

Ø When option -p is omitted job is queued into default partition (on Prometheus 
plgrid)

SLURM – sbatch command options 26



Ø There are several recourses available for job

Ø -t, --time=<time> total maximal execution wall time of job

Ø -N, --nodes=<nodes> amount of nodes allocated to job
Ø -n, --ntasks=<ntasks> amount of tasks invoked in whole job

Ø --ntasks-per-node=<ntasks> amount of tasks invoked on each node
Ø --cpus-per-task=<cores> amount of cores per each task (i.e. when 

using threads in OpenMP)

Ø --mem=<MB>amount of memory per node requested by job
Ø --mem-per-cpu=<MB> amount of memory per core requested by job

Ø Parameter formats

Ø time format: "min", "min:sec", "hours:min:sec", "days-
hours", "days-hours:min" and "days-hours:min:sec"

Ø memory: MB (=1024kB), GB (=1,024MB)

SLURM – job requirements specification 27



#SBATCH --job-name=serial.job
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --time=10:00
#SBATCH --mem=24000
#SBATCH --partition=plgrid
#SBATCH --account=plgtraining2021

module add plgrid/tools/intel

icc -xHost hello.c -o hello.x

./hello.x

SLURM – example serial job

Ø In SLURM job is sent to partition not to queue

Ø flag –p <partition_name> or --partition 
<partition_name>

Ø partition for PLGrid users: plgrid*

28



#SBATCH --job-name=parallel-srun
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=2
#SBATCH --time=10:00
#SBATCH --mem-per-cpu=1GB
#SBATCH --partition=plgrid
#SBATCH --account=plgtraining2021

module add plgrid/tools/intel

icc -xHost hello.c -o hello.x

srun ./hello.x

SLURM – example parallel job

Ø srun inside batch job executes command ./hello.x on allocated resources 
according to requested --ntask or --nodes*--ntasks-per-node flags

Ø variable SLURM_NTASKS holds information about number of tasks to be run

Ø each srun could request more than one core
Ø srun –nodes=x --ntasks=y --cpus-per-task=z …

29



#SBATCH --job-name=parallel-openmp
#SBATCH –-nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=24
#SBATCH --time=10:00
#SBATCH --mem-per-cpu=2GB
#SBATCH --partition=plgrid
#SBATCH --account=plgtraining2021

module add plgrid/tools/intel

icc -xHost –qopenmp hello.c -o hello.x

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

./hello.x

SLURM – example parallel OpenMP job 30

Ø When use OpenMP

Ø use --cpus-per-task=<cores_per_job> and
--nodes=1 for request of resources

Ø variable SLURM_CPUS_PER_TASK holds information about number CPUs 
allocated to each task



#SBATCH --job-name=distributed-mpi
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=24
#SBATCH --time=10:00
#SBATCH --mem-per-cpu=1GB
#SBATCH --partition=plgrid
#SBATCH --account=plgtraining2021

module add plgrid/tools/impi

mpiicc -xHost hello.c -o hello.x

mpiexec -np $SLURM_NTASKS ./hello.x

SLURM – example parallel MPI job 31

Ø When software is parallelized using MPI

Ø use --ntasks-per-node=<cores_per_node and
--nodes=<no_of_nodes> for request of resources

Ø variable SLURM_NTASKS holds information about number of tasks to be run



#SBATCH --job-name=mpi-openmp
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=6
#SBATCH --time=10:00
#SBATCH --mem-per-cpu=2GB
#SBATCH --partition=plgrid
#SBATCH --account=plgtraining2021

module add plgrid/tools/impi

mpiicc -xHost -qopenmp hello.c -o hello.x

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

mpiexec -np $SLURM_NTASKS ./hello.x

SLURM – example parallel hybrid MPI/OpenMP job 32

Ø When hybrid MPI/OpenMP

Ø use --cpus-per-task=<cores_per_job> and 
$SLURM_CPUS_PER_TASK for  distribution of threads

Ø use --ntasks-per-node=<cores_per_node> for request of MPI 
processes

Ø



Ø SLURM adds environmental variables which could ease performing computation

SLURM – environmental variables

Variable Description

SLURM_JOB_ID job identifier (jobID)

SLURM_SUBMIT_DIR dir, from which batch script was submitted to queuing 
system

SLURM_NTASKS total number of tasks (i.e. MPI processes) in the current job

SLURM_NTASKS_PER_NODE number of tasks to be run on one node

SLURM_NODELIST list of nodes allocated to the job

SLURM_CPUS_PER_TASK number of cores requested per task

TMPDIR, SCRATCHDIR scratch file temporary directories for job

SCRATCH $USER’s root scratch directory on distributed Lustre file 
system

SCRATCHDIR unique directory for the job on $SCRATCH

Ø Environment variables can be used to control distribution of job

Ø MPI jobs: SLURM_NTASKS to run MPI processes (using srun) variable

Ø OpenMP jobs: SLURM_CPUS_PER_TASK to run proper number of threads 
Ø hybrid MPI/OpenMP jobs: combine SLURM_NTASKS to run MPI processes 

and SLURM_CPUS_PER_TASK to expand threads
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Ø Interactive work on cluster should be done using interactive jobs trough srun command

Ø srun -p plgrid -A <grant_id> -n 1 --pty /bin/bash

Ø User interface must not be used for computing

Ø High priority queue plgrid-now for interactive work

Ø one job on one node up to 12:00:00

Ø To attach terminal to running batch job

Ø srun -N1 -n1 --jobid=<jobID> --pty /bin/bash
Ø srun -N1 -n1 --jobid=<jobID> -w <nodeID> --pty /bin/bash
Ø sattach <jobid.stepid> 

Ø Prometheus helper script ssh_slurm
Ø ssh_slurm <jobid> <dest_host> [command]

SLURM – interactive jobs 34



Ø Multiple jobs can be executed with identical parameters within one sbatch run as array 
jobs when -a, --array=<indexes> option used

Ø sbatch –a n-m,k,l script.slurm (np. sbatch –a 0-9 or 
sbatch –a 2,4,7)

Ø All jobs within array have same value of SLURM_SUBMIT_DIR and 
SLURM_ARRAY_JOB_ID variables, but have additional unique identifier 
SLURM_ARRAY_TASK_ID (number of job in array)

#!/bin/env bash
#SBATCH -a 0-4,9
#SBATCH --time=5:00
OUTPUTDIR=$SLURM_SUBMIT_DIR/$SLURM_ARRAY_JOB_ID
mkdir -p $OUTPUTDIR
cd $TMPDIR
hostname > task.$SLURM_ARRAY_TASK_ID

mv task.$SLURM_ARRAY_TASK_ID $OUTPUTDIR

Ø squeue –a – shows all jobs in array queued in system

SLURM – array jobs 35



Ø Dependencies between jobs can be added through --dependency= 
<dependency_list> option

Ø Possible dependencies

Ø after:job_id[:jobid...] – job can begin execution after the specified 
jobs have begun execution

Ø afterany:job_id[:jobid...] – job can begin execution after the 
specified jobs have terminated

Ø afternotok:job_id[:jobid...] – job can begin execution after the 
specified jobs have terminated in some failed state

Ø afterok:job_id[:jobid...] – job can begin execution after the 
specified jobs have successfully executed

Ø expand:job_id – resources  allocated to this job should be used to 
expand the specified job

Ø singleton – job can begin execution after any previously launched jobs 
sharing the same job name and user have terminated

SLURM – job’s dependencies 36



Ø GPGPUs are shown in SLURM queuing system as generic resources (GRES) with gpu
identifier.  

Ø To check where GPGPUs are available

Ø sinfo -o '%P || %N || %G'
Ø To request GPGPUs for a job --gres=gpu[:count] has to be added to sbatch/srun

command

Ø srun -p plgrid-gpu -N 2 --ntasks-per-node=24 -n 48 -A 
<grant_id> --gres=gpu[:count] --pty /bin/bash –l

Ø #SBATCH --gres=gpu[:count]
Ø GPGPUs are available only in plgrid-gpu and plgrid-gpu-v100 partitions
Ø GPUPUs available for job are listed in CUDA_VISIBLE_DEVICES environmental 

variable

Ø Monitoring of GPGPUs usage could be done using nvidia-smi program
Ø nvidia-smi dmon
Ø nvidia-smi -l

SLURM – jobs with GPGPUs 37



Ø scancel command is used to delete unwanted jobs from queuing system

Ø scancel <JobID>

Ø Information about jobs which cannot be deleted using scancel should be sent to 
system administrators through

Ø Helpdesk PLGrid PL

Ø https://helpdesk.plgrid.pl
Ø helpdesk@plgrid.pl

Ø directly to system administrators prometheus@cyfronet.pl

SLURM scancel – deleting jobs 38
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Ø pro-jobs/hpc-jobs and pro-jobs-history/hpc-jobs-history could 
be used to monitor efficiency of jobs

Ø memory usage

Ø CPU usage

Ø pro-jobs/hpc-jobs – running and queued jobs

Ø pro-jobs-history/hpc-jobs-history – historical data of completed jobs

Ø pro-jobs* usage

Ø pro-jobs -N – additional information about nodes of job(s)
Ø pro-jobs –v – more detailed information about job(s)

Ø pro-jobs -j (<jobID>) – information only about job(s) 

Ø pro-jobs –h – help screen
Ø pro-jobs-history –d <period> jobs completed in last <period> days

Job monitoring with pro-jobs*/hpc-jobs* 39



Best practices

Ø SLURM job  batch script is always started in directory from which it was submitted to 
queuing system. Access to that directory is also possible with SLURM_SUBMIT_DIR

Ø All batch jobs have got file in which data from standard outputs (both standard output 
stream stdout and standard error stream stderr) is stored named slurm-
<JobID>.out
Ø those file should not be big (less than several MBs) and are stored in 

SLURM_SUBMIT_DIR
Ø -o, --output=<file> and -e, --error=<file> - options to redirect

stdout and stderr

Ø When commands in SLURM script print big amount of data into output  streams user should 
redirect that data to file(s)
Ø for standard output stream (stdout): command > file.out
Ø for standard error stream (stderr): command 2> file.err
Ø for both streams to one file: command &> file.log

Ø $HOME and $PLG_GROUPS_STORAGE must not be used for heavy I/O computations

40



Ø During batch job submission user should always
Ø specify maximal time of job execution (parameter t/time)
Ø specify maximal RAM amount needed by job through mem (or mem-per-cpu)
Ø enable checkpoints 
Ø for parallel computations use all cores on nodes when possible 
Ø when big amount of data is used in computation always use $SCRATCH for files
Ø when big amount of data is going to be passed to standard output streams redirect it to 

files and use $SCRATCH
Ø load runtime environment of software via module command in batch script
Ø do not load software modules in scripts loaded at  user’s login (i.e..bashrc) 

41Best practices



Computational grants

Ø Obtained through PLGrid Portal - https://bazaar.plgrid.pl/
Ø distinct grants for GPGPU

Ø Commands
Ø plg-show-grants (hpc-show-grants)
Ø plg-show-grant-details <account> (hpc-show-grant-

details <account>)
Ø plg-show-default-grant (hpc-show-default-grant)

Ø Accounting portal - https://accounting.plgrid.pl/

42
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Additional „filesystems”

ØMEMFS
Ø-C memfs
Ø$MEMFS
Øuse memory as filesystem (120GB max)

Ø Accessible only within node
Øavailable during JOB and lost after it finishes

ØLOCALFS
Ø-C localfs
Ø$SCRATCH_LOCAL
Øuse file as filesystem (512GB per node)
ØEach node has its own file! (not a shared filesystem)

Ø Accessible only within node
ØAvailable during JOB and lost after it is finished
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Software compilation

Ø Always compile on computing node using 
Ø batch job with sbatch
Ø interactive job with srun --pty bash
Ø use modules (also for libraries)

Ø Intel® MKL Link Line Advisor: https://software.intel.com/en-us/articles/intel-mkl-link-
line-advisor/

Ø when software could be used by various users consider global compilation by admins
Ø use IntelMPI (plgrid/tools/impi) and OpenMPI (plgrid/tools/openmpi) 

modules build by admins 
Ø check threads and processes bindings (i.e. KMP_AFFINITY environment variable)
Ø LOCALFS or MEMFS could speed up compilation

Ø Common compilation flags on Haswell CPUs
Ø GCC: -march=native, -fopenmp
Ø Intel: -xCORE-AVX2 (or -xHost), -qopenmp, -fma-/-no-fma
Ø PGI: -tp haswell, -mp, -fast, -Mipa=fast,inline, -i8
Ø http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-Haswell-1.pdf

Ø When in trouble contact admins trough PLGrid Helpdesk
Ø https://helpdesk.plgrid.pl/
Ø helpdesk@plgrid.pl
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MPI vs OpenMP

➢OpenMP
➢API for writing shared-memory 

software
➢Shared memory in threads
➢Requires support in compiler

(-qopenmp, -fopenmp)

➢MPI
➢Message Passing Interface 

(send, receive, broadcast)
➢Every process has its own 

isolated memory space
➢Can use more than one machine 

via interconnect (eth, openid)
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Affinity 46

▪ Threads: Depends on compiler which was used to build software
▪ Intel: KMP_AFFINITY 

▪ compact – nearest to free context (processor)
▪ verbose – extend verbosity

▪ GCC: 
▪ GOMP_CPU_AFFINITY=0-23
▪ OMP_PROC_BIND=true
▪ OMP_PLACES={threads | cores | sockets | ll_caches | 

numa_domains}
▪ OMP_DISPLAY_ENV = {TRUE | VERBOSE | FALSE}

▪ Processes (MPI): Depends of spawner (mpiexec, mpiexec.hydra, srun)
▪ --bind-to {core | numa | none}

▪ OpenMPI – works fine
▪ IntelMPI

▪ use environmental variables
▪ I_MPI_PIN_DOMAIN = {core | socket | numa | node | 

cache | omp | auto}
▪ I_MPI_PIN_ORDER = {scatter | compact | spread | 

bunch}
▪ use default SLURM settings



HPC Containers

Ø Usage
Ø module add plgrid/tools/singularity/stable
Ø singularity exec <container-name.sif> command

Ø Remarks
Ø Possibility pull Docker/Singularity container 
Ø Usage of GPU though -nv flag
Ø Attach Prometheus folders using -B flag, i.e:

singularity exec -B /net biopython_latest.sif python3

singularity exec -B $SCRATCH:/tmp/scratch biopython_latest.sif

Ø Usage restrictions
Ø Creation of container requires root permissions, therefore cannot be done on Promehteus

– use PLGrid cloud instead

plgrid/tools/singularity
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Python

Ø Versions available at Prometheus cluster 
Ø GNU: 

Ø 2.7.14, 3.6.5, 3.7, 3.8, 3.9
Ø plgrid/tools/python

Ø Intel:
Ø 2.7.14, 2.7.13, 2.7.14, 3.5.2, 3.5.3, 3.6.2, 3.6.5, 3.7, 3.7.7
Ø plgrid/tools/python-intel

Ø Special modules for tensorflow, scipy, numpy, mpi4py

Ø Usage
Ø module add plgrid/tools/python/<version>
Ø module add plgrid/tools/python-intel/<version>

Ø Remarks
Ø Build with MKL numerical libraries, support for GPGPU computing
Ø python-intel use conda package manager

Ø Usage restrictions
Ø only SMP mode (up to 24 computing cores@Prometheus)

Ø multi-node MPI only with libs such as py4mpi , Dask, Ray i.e.

plgrid/tools/python or plgrid/tools/python-intel
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Python – package manager (pip) 49

Ø In Python you can easily manage your python modules via pip (pip3)
Ø pip list
Ø pip search numpy
Ø pip install numpy
Ø pip install –U numpy
Ø pip install –u numpy==1.10.1

Ø The problem is when you need more than one environment

Ø Solution is virtualenv
Ø virtualenv --system-site-packages my_new_env
Ø source my_new_env/bin/activate
Ø pip install –U whatever you want
Ø deactivate

Ø One directory for each environment – clean project management



Ø On HPC clusters computations are executed on worker nodes

Ø usually no GUI
Ø usually behind firewall

Ø Jupyter notebook/ Jupyterlab needs GUI in web browser 

Ø Therefore there is a need to port tunnelling

Ø First submit job which create jupyter notebook and tunnel from worker node to 
login node

Ø Establish tunnel from your computer to login node of cluster

Ø Open notebook in your favourite browser on your computer

Jupyer notebook @Prometheus 50



Ø SLURM job create

Ø jupyter notebook
Ø tunnel from worker node to login node

#!/bin/bash
#SBATCH --partition plgrid-testing

## get tunneling info
XDG_RUNTIME_DIR=""
ipnport=$(shuf -i8000-9999 -n1)
ipnip=$(hostname -i)
user=$USER

module load plgrid/tools/python

## start an ipcluster instance and launch jupyter server
jupyter-notebook --no-browser --port=$ipnport --ip=$ipnip pyton-notebook.slurm

Jupyer notebook @Prometheus 51



Ø User has to create second tunnel form user’s computer to login node of Prometheus 
(pro.cyfronet.pl)

Ø ssh -N -L <local-port>:<worker-node-ip>:<remote-port> 
plgusername@pro.cyfronet.pl

Ø info about tunnel details <local-port>, <worker-node-ip>, 
<remote-port> are in log file of SLURM job

Ø plgusername – user’s logname

Ø After establishing both tunnels jupyter notebook is ready to start

Ø open webpage localhost:<local-port> in browser on your local 
clomputer

Ø remember about token, which is listed in  log file of SLURM job

Jupyer notebook @Prometheus 52



Creating own module 53

Ø Create directory for modules, eg. $PLG_GROUPS_STORAGE/your-team-
name/modules

Ø Create there subdirs for modules, eg. app/name

Ø Create Lua file for lmod, eg. 1.0.lua

Ø Set path for new module: module use $PLG_GROUPS_STORAGE/your-team-
name/modules

Ø Load module with: module load app/name/1.0

local pkgName = myModuleName()
local fullVersion = myModuleVersion()
whatis("Name: "..pkgName)
whatis("Version "..fullVersion)
whatis("Description: Abaqus")
local APPDIR = '/net/software/local/abaqus/2017'
depends_on('plgrid/tools/intel/18.0.0')
prepend_path('PATH', APPDIR .. '/bin’)
prepend_path(‚LD_LIBRARY_PATH', APPDIR .. '/lib')



GUI @ Prometheus - Pro-Viz 

➢ Pro-viz is a new service for users of Prometheus that allows running GUI mode 
of software using: TurboVNC https://www.turbovnc.org.

➢ To run  TurboVNC you have to install Java JRE x86.

➢ At first step user need to run pro-viz on the cluster. To use it you need to load 
software module of pro-viz:

module load tools/pro-viz
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Pro-Viz command syntax 55

pro-viz ...
start [-n CORES | -N NODES | -p PARTITION | -t TIME | -A 

ACCOUNT | -r RESERVATION | -g GPUS | -C constraints | -m EMAIL-ADDRESS 
] - start a new batch session

interactive [ -p PARTITION | -t TIME | -A ACCOUNT | -r 
RESERVATION | -g GPUS | -C constraints  ] - start a new interactive 
session

list - list all sessions
attach JOBID - attach session to a working job with JOBID
password JOBID - generate access token for session JOBID
stop JOBID - terminate session JOBID
killall - terminate all sessions
help - duh



Pro-Viz command syntax

In this tutorial will be presented running one job on cluster Prometheus with 
1 full working node, 24CPU. To do this you need to run commands: 

➢ module load tools/pro-viz

➢ pro-viz start -N 1 -n 24 -p plgrid -A tutorial -t 03:00:00

➢ pro-viz password JOBID
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PLGrid Infrastructure
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PLGrid Infrastructure

Ø Projects:
Ø PL-Grid
Ø PLGrid Plus
Ø PLGrid NG
Ø PLGrid Core

Ø PLGrid Consortium
Ø Coordinator: ACC Cyfronet AGH
Ø Partners:

Ø Poznan Supercomputing and Networking Center, Poznań
Ø Interdisciplinary Centre for Mathematical and Computational Modelling, Warszawa
Ø Wroclaw Centre for Networking and Supercomputing, Wrocław
Ø Tricity Academic Computer Centre, Gdańsk
Ø National Centre for  Nuclear Research, Świerk

58

http://www.plgrid.pl/en/

http://www.plgrid.pl/en/


Computing

Ø 5+ PTFLOPS
Ø 130 000+ cores

Storage

Ø 70+ PB
Ø archives

Ø backups

Ø distributed access
Ø fast scratch filesystems

Scientific software

Ø 750+ apps, tools, 
libraries

Ø apps.plgrid.pl

Team work utilities

Ø project management 
(JIRA)

Ø version control (Git)

Ø teleconferencing (Adobe 
Connect)

Computational Cloud

Ø PaaS based on OpenStack

PLGrid 59



PLGrid - computational infrastructure for science

Ø The PLGrid Infrastructure is available free of charge for Polish researchers and all 
those engaged in scientific activities in Poland

Ø On-line registration through PLGrid Users’ Portal – https://portal.plgrid.pl
Ø User verification based on Polish Science Database – https://www.nauka-polska.pl

On PLGrid Users Portal user can
Ø apply for access to tools and services
Ø monitor utilization of resources
Ø manage their computational grants and grid certificates

Access to all PLGrid resources through one account and one passphrase (or grid 
certificate)
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PLGrid - accessing resources

Steps necessary to grant access to PLGrid resources

Ø Create account at PLGrid Users’ Portal – https://portal.plgrid.pl
Ø Create (Scientific) Affiliation
Ø Create Team
Ø Create Computational Grant for the team
Ø Apply for necessary services/entry points at Services and Applications 

Catalogue - https://apps.plgrid.pl
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EuroHPC

Ø The European High Performance
Computing Joint Undertaking
Ø 32 participating countries
Ø the European Union (represented by 

the European Commission) 
Ø private partners

Ø Goals
Ø deploy top-of-the-range 

supercomputing infrastructures across 
Europe to support European HPC users 
wherever they are in Europe

Ø implement an ambitious research and 
innovation agenda to develop 
a competitive HPC ecosystem and 
supply chain in Europe, which includes 
hardware, software, applications but 
also training and skills
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LUMI Consortium

ØLUMI will be an HPE Cray EX
supercomputer manufactured 
by Hewlett Packard Enterprise 

ØPeak performance over 550 
petaflop/s makes the system 
one of the world’s fastest 

Ø Available for users in
Ø LUMI-C Q4 2021
Ø LUMI-G Q1 2022
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EUROCC

Ø National Competence Centres for 
EuroHPC 

Ø Goals
Ø Establishing network of national HPC 

competence centers in all EuroHPC 
member states

Ø Focus on cooperation between all 
stakeholders in european HPC

Ø Training of scientific staff and 
development of HPC software in both 
academia and industrial environments 
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PRACE RI

Partnership for Advanced Computing 
in Europe
▶Open access to world-class HPC systems to EU scientists 
and researchers
▶ Variety of architectures to support the different scientific 
communities
▶ High standards in computational science and engineering
▶ Peer Review at European level to foster scientific 
excellence
▶ Robust and persistent funding scheme for HPC supported 
by national governments and European Commission (EC)
▶ Support the development of intellectual property rights 
(IPR) in Europe by working with industry and public services
▶ Collaborate with European HPC industrial users and 
suppliers
▶ Training and Outreach for HPC scientist and students

65

https://prace-ri.eu/

https://prace-ri.eu/


PRACE | members
Hosting Members
▶ France
▶ Germany
▶ Italy
▶ Spain
▶ Switzerland

General Partners (PRACE 2) 
▶ Belgium
▶ Bulgaria
▶ Cyprus
▶ Czech Republic
▶ Denmark
▶ Finland
▶ Greece
▶ Hungary
▶ Ireland
▶ Israel

▶ Luxembourg

▶ Netherlands

▶ Norway

▶ Poland

▶ Portugal

▶ Slovakia

▶ Slovenia

▶ Sweden

▶ Turkey

▶ United KingdomObservers

▶ Croatia

▶ Romania



PRACE | Tier-0 Systems

MareNostrum: IBM
BSC, Barcelona, Spain

JUWELS: BULL Sequana X1000
GAUSS @ FZJ, Jülich, GermanyJoliot Curie: BULL Sequana X1000 

GENCI/CEA, Bruyères-le-Châtel, France

SuperMUC-NG: Lenovo ThinkSystem
GAUSS @ LRZ, Garching, Germany

MARCONI: Lenovo
CINECA, Bologna, Italy

Piz Daint: Cray XC50
CSCS, Lugano, Switzerland



PRACE | Tier-1 Systems

ARCHER: Cray XC30
EPCC, Edinburgh, UK
#252 Top 500

Puhti: BullSequana X400
CSC, Espoo, FinlandSalomon: SGI ICE X

IT4I, Ostrava, Czech Republic
#282 Top 500

Beskow: Cray XC40
KTH, Stockholm, Sweden
#151 Top 500

Cartesius: Bull Bullx B720/B710
SURFSara, Amsterdam, The 
Netherlands
#455 Top 500

Prometheus: HPE Apollo 8000
ACC Cyfronet AGH-UST, Krakow, Poland
#174 Top 500



Free-of-charge required to publish results at the end of the award 
period

www.prace-ri.eu/call-announcements/

Criterion:

Scientific Excellence

Assessed by an

improved review

process

Preparatory Access (2 to 6 months)

SHAPE Programme (2 to 6 months)

Distributed European Computing Initiative  (Tier-1 12 months)

PRACE | project access

Project Access (12, 24 or 36 months)
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PRACE | project access

Open Call 
for 

Proposals

Technical
Review 

Scientific
Peer Review

Technical experts 
in PRACE systems 
and software

Access 
Committee & 
Resource 
Allocation 
Committee

Priorisation 
+ 

Resource
Allocation

Project 
+ 

Final
Report

ResearchersResearchers with 
expertise in 
scientific
field of proposal

~ 2 Months ~ 3 Months Up to 3 years

Right 
to reply

http://www.prace-ri.eu/prace-project-access/
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PRACE | project access
▶ 24th Call for Proposals for Project Access

▶ Opening of the call: 9 September 2021

▶ Closing of the call: 2 November 2021, 10:00 CET

▶ Allocation period for awarded proposals: April 2022 – March 2023

▶ Type of Access: Project Access and Multi-Year Project Access

▶ Applications for Project Access must use codes that have been previously tested and

▶ demonstrate high scalability and optimization to multi-core architectures

▶ demonstrate a requirement for ensemble simulations that need a very large 

amount of CPU/GPU
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PRACE | preparatory access

Open Call 
for 

Proposals

Technical
Review

Award
Decision & Project 

start

Project 
+ 

Final
Report

Administrative
check 

PRACE staff ResearchersPRACE 
Board

of
Directors

Open call for 
scalability and 
optimisation

Cut-off each
3 months for 
PRACE support 
requests

2, 6 or 12
months

Technical experts in 
PRACE systems and 

software

1 week

PHASE I PHASE II PHASE III PHASE IV

http://www.prace-ri.eu/prace-preparatory-access/
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PRACE | Distributed European 
Computing Initiative 

▶ 17th Call for Proposals for DECI (Tier-1)

▶ Opening of the call: 16 December 2020

▶ Closing of the call: 31 January 2019, 18:00 UTC

▶ Allocation period for awarded proposals: June 2021 – May 2022

▶ Type of Access: DECI (Tier-1)

▶ Applications for DECI:

▶ projects requiring access to Tier-1 resources that are not currently available in 

PI’s own country or for international collaborations

▶ individual projects limited to around 5 million machine hours (2.5  million 

machine hours in average)
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Summer of HPC (programme for 
undergraduate and postgraduate students)

PRACE Training and Events portal

6 PRACE Advanced Training Centres (PATCs) 
and 4 Training Centres (PTCs)

PRACE training events: Seasonal Schools, 
International HPC Summer School, On-

demand training events

CodeVault, Massive Open Online Courses 
(MOOCs)

provide a sustained, high-quality training and education service for the European HPC 
community

PRACE | Training and Outreach activities

Training topics
Different levels of training 

▶ Basic, intermediate, advance
High performance computing
▶ Parallel programming
▶ Accelerators

▶ Performance optimization
Domain-specific topics 
▶ Simulation software

▶ Visualization
▶ Data intensive computing
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► www.training.prace-ri.eu

► Single hub for the PRACE training events, 
training material and tutorials

► PATC Programme 2020-2021
► Online training events due to COVID19 
► New courses on forward-looking topics
► New hardware and programming 

paradigms
► Data science
► Collaboration with CoEs on several 

courses

PRACE | Training and Events Portal

"Prace realizowane przy wsparciu Ministerstwa Nauki i Szkolnictwa Wyższego,
decyzja nr DIR/WK/2016/18"
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