
Efficient usage of HPC systems
in scientific computing

Maciej Czuchry, Klemens Noga

Ø Ares, Prometheus & Zeus clusters at ACC Cyfronet AGH

Ø available resources

Ø access to clusters/data transfer

Ø Performing calculations

Ø software environment management using Modules/Lmod
Ø batch scripts

Øsequential and parallel runs
Ø efficient usage of SLURM queuing system

Ø Documentation and users' support

Ø Questions and exercises

Ø Zeus & Prometheus as a part of PLGrid Infrastructure

Ø PRACE and EuroHPC (LUMI) - computational opportunities

Agenda 2

3Academic Computer Centre Cyfronet AGH

Academic Computer Centre Cyfronet AGH

Ø The biggest Polish Academic Computer Centre
Ø 45+ years of experience in IT provision

Ø Centre of excellence in HPC, Grid and Cloud Computing

Ø Home for Ares, Prometheus and Zeus supercomputers

Ø LUMI consortium partner (EuroHPC pre-exascale supercomputer)

Ø Legal status: an autonomous within AGH University of Science and Technology

Ø Staff: >150 , ca. 60 in R&D

Ø Leader of PLGrid: Polish Grid and Cloud Infrastructure for Science

ØNGI Coordination in EGI e-Infrastructure

4

Academic Computer Centre Cyfronet AGH

Prometheus
Ø 2.4 PFLOPS

Ø 53 568 cores

Ø From 2015 to 2021
1st HPC system in
Poland (440th on Top 500, 38th in 2015)

5

Zeus
Ø 374 TFLOPS

Ø 25 468 cores

Ø 1st HPC system in Poland
(from 2009 to 2015, highest

rank on Top500 – 81st in 2011)

Computing portals and
frameworks

Ø OneData

Ø PLG-Data

Ø Rimrock

Ø InSilicoLab

Data Centres

Ø 3 independent data centres

Ø dedicated backbone links

Research & Development

Ø distributed computing environments

Ø computing acceleration

Ø machine learning

Ø software development & optimization

Storage

Ø 60+ PB

Ø hierarchical data management

Computational Cloud

Ø based on OpenStack

Ares

Ø 4 PFLOPS

Ø 38 112 cores

Ø 267th on Top 500

Network backbone lines

Ø4 main links to achieve maximum reliability
ØEach link with 7x10Gbps capacity
ØAdditional 2x100Gbps dedicated links
ØDirect connection with GEANT scientific network

6

Polish HPC @TOP500 – Nov 2021

ØSupercomputers from Poland
Ø131 – Altair (PSNC) (PLGrid)
Ø267 – Ares (ACC Cyfronet AGH) (PLGrid)
Ø426 – Tryton Plus (TASK)
Ø440 – Prometheus (ACC Cyfronet AGH) – 2.4 Pflops (PLGrid)

7

Ø High Performance Computing (HPC) – using supercomputers to solve problems that cannot be
addressed by regular computes

Ø use vast amount of processors/cores simultaneously

Ø use huge memory allocations
Ø use specialized computation accelerators (GPUs, FPGA, ASIC)

Ø very fast access to data on dedicated high performance storage systems

Ø High Throughput Computing (HTC) – processing as much jobs (individual job could be quite
simple) as possible using HPC infrastructure

Ø High Performance Data Analysis (HPDA) - using HPC infrastructure to analyse vast amount of
data

What is HPC? 8

User interface

Queuing system

srun science.bin

Storage

ssh user@pro.cyfronet.pl

sbatch –p plgrid –N 8 –n 32 do_science.sh

High Performance Computing 9

Ø Prometheus consist user interface nodes (UI), service nodes and worker nodes
Ø 2 232 worker nodes (2x Intel Xeon E5-2680v3 processors)

Ø 72 nodes with additional GPPGU (2x nVidia Tesla K40XL)

Ø 3 big memory nodes (2x Intel Xeon Gold 6128, 12 x 3.4 GHz, 768 or 1536 GB)
Ø 4 ML/AI nodes (2 x Intel® Xeon® Gold 5220, 36 x 2.2 GHz, 386 GB, 8 x NVIDIA V100

SXM2 32GB HBM2)

Prometheus HPC cluster

Property Prometheus

CPU frequency 2.50 GHz

RAM 128 GB

cores per node 24

InifiniBand interconnect available, EDR 56 Gb/s

10

Ø Ares consist user interface nodes (UI), service nodes and worker nodes
Ø 788 CPU nodes (2x Intel Xeon Platinum 8268 processors, 48 x 2.9 GHz)

Ø 532 nodes with 192 GB (4GB/core)

Ø 256 nodes with 384 GB (8GB/core)
Ø 9 ML/AI nodes (2 x Intel Xeon Gold 6242, 32 x 2.8 GHz, 384 GB, 8 x NVIDIA V100

SXM2 32GB HBM2)

Ares HPC cluster

Property Ares Ares GPU

CPU frequency 2.9 GHz 2.8 GHz

RAM 192/384 GB 384 GB

cores per node 48 32

InifiniBand
interconnect available, HDR 100 Gb/s

11

Ø All PLGrid HPC clusters use Linux as OS
Ø CentOS 7 on Prometheus & Zeus

Ø CentOS 8 on Ares

Ø HPC clusters contain

Ø user interface (UI) node(s)
Ø computing nodes (a.k.a worker nodes)

Ø User interface must not be used for computing

Ø Fair share between users tasks and computations provided by queuing system
Ø SLURM on Ares, Prometheus & Zeus

Access to computing clusters 12

Ø User log on user interface (UI) node using SSH protocol

Ø UI names:
Ø login@zeus.cyfronet.pl

Ø login@prometheus.cyfronet.pl (login@pro.cyfronet.pl)

Ø two login nodes: login01 and login02
Ø login@ares.cyfronet.pl

Ø SSH clients
Ø on Linux and MacOS included in OS

Ø ssh command in terminal

Ø on Windows
Ø PuTTY - http://www.chiark.greenend.org.uk/~sgtatham/putty/

Ø MobaXterm - http://mobaxterm.mobatek.net
Ø copying files and directories

Ø on Linux and MacOS included in OS

Ø scp command in terminal
Ø rsync command in terminal

Ø on Windows
Ø WinSCP - http://winscp.net/

Access to computing clusters 13

mailto:login@zeus.cyfronet.pl
mailto:login@prometheus.cyfronet.pl
mailto:login@pro.cyfronet.pl
mailto:login@zeus.cyfronet.pl
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://mobaxterm.mobatek.net/
http://winscp.net/

Ø Storage of data – NFS (quite slow, should not be used for heavy I/O calculations)

Ø $HOME – user’s home directory
Ø quota 40 GB

Ø $PLG_GROUPS_STORAGE – additional storage gained through PLGrid grants
system

Ø Temporary scratch file systems

Ø $SCRATCH – distributed scratch Lustre file system
Ø accessible from all nodes of cluster (including UI)

Ø $TMPDIR and $SCRATCHDIR – unique subdirectories on $SCRATCH
created for the job at it’s start

Ø To check quota use pro-fs/hpc-fs

Prometheus – file systems 14

Ø Scientific software usually needs specific runtime environment (i.e. additional libraries)
and sometimes technical knowledge is needed to install them efficiently

Ø Modules and Lmod packages are solutions for loading runtime environments on every
cluster in PLGrid infrastructure

Ø Advantages

Ø simplicity of preparing software to run efficiently

Ø computation scripts could be transferable between HPC clusters
Ø possibility of concurrent runs of different versions of software

Ø on hybrid HPC systems transparent switching to most efficient version of
software

Ø Drawbacks
Ø additional command to remember .-)

Software 15

Ø Load environment for scientific package

Ø module add <module-name> (i.e. module add plgrid/apps/r)

Ø module load <module-name> (i.e. module load plgrid/apps/matlab)
Ø Remove module

Ø module rm <module-name> (i.e. module rm plgrid/apps/r)
Ø module unload <module-name> (i.e. module unload

plgrid/apps/matlab)
Ø Listing of all available modules

Ø module avail
Ø module avail plgrid/tools (only from tools branch)
Ø module avail plgrid/apps/r (all available R versions in plgrid/apps)

Ø module spider python (all available Python versions)

Ø module spider “/r/” (all available R versions, regexp search)
Ø Listing of loaded modules

Ø module list

Software – modules 16

Ø Clearing all loaded modules

Ø module purge
Ø Saving collection of modules for later use, restoring it and listing saved collections

Ø module save [collection]
Ø module restore [collection]
Ø module savelist
Ø module describe [collection]

Ø ml is shorthand for module command
Ø ml = module list
Ø ml <module-name> = module load <module-name>
Ø ml -<module-name> = module unload <module-name>
Ø ml av <string> = module avail <string>

Ø Getting help

Ø module help
Ø ml -h

17Software – modules

Ø Each software package installed in PLGrid infrastructure has it’s own module

Ø plgrid/<branch>/<software-name>/<version>
Ø Branch kinds

Ø apps - for most of scientific packages
Ø libs - for software libraries

Ø tools – for toolkits and helper packages
Ø User’s own modules

Ø module use path – adds path with additional modules

Ø Examples:

Ø plgrid/tools/intel/19.0.5
Ø plgrid/apps/r/3.6.0
Ø plgrid/tools/python/3.6.5
Ø plgrid/apps/relion

https://apps.plgrid.pl/

18Software – modules

https://apps.plgrid.pl/

Ø User interact with SLURM queuing system using commands

Ø sbatch – to submit new job to queue
Ø squeue – gives information about jobs running in queuing system

Ø scancel – deletes jobs from queue
Ø sinfo/scontrol – gives detailed information about queue, job or node

Ø smap – gives graphical information about state of HPC cluster

Ø srun – runs interactive job or step in batch job

Ø Each job has got unique job identifier (jobID)

SLURM queuing system – commands 19

Ø Queuing system
Ø manage all computational task on cluster

Ø monitor available resources

Ø acts as matchmaker between needs of jobs and resources
Ø empowers fair share between different users

Ø All computational tasks are run as jobs queued in queues and run according to their
priority and available resources.

Ø Priority of job depends on
Ø amount of resources obtained by user in computational grant

Ø amount of resources requested by job
Ø maximum wall time of computation is most essential resource

Ø amount of other resources concurrently used by job’s owner

Queuing system 20

Ø HPC clusters available in PLGrid use several kinds of queuing systems

Ø SLURM (http://slurm.schedmd.com)
Ø PBS Pro (http://pbspro.org)

Queuing systems in PLGrid

HPC Centre Cluster Queuing system

ACC Cyfronet AGH

Prometheus SLURM

Zeus SLURM

Ares SLURM

PSNC Eagle/Altair SLURM

TASK Tryton SLURM

WCSS Bem/Bem2 PBS Pro

21

http://slurm.schedmd.com/
http://pbspro.org/

Ø Command sbatch submits new job in queue

Ø All parameters describing job’s requirements could be included in batch script and given
to queuing system using command

Ø sbatch [options] script.slurm

Ø Example script

SLURM queuing system – job submission

#!/bin/env bash

Commands that will be run after start of the job
echo "Computation started on work node: ";
hostname

module add plgrid/apps/matlab

matlab -nodisplay <matlab.in >matlab.out

22

Ø Commands squeue and hpc-jobs give view of jobs scheduled in queuing system
Ø Jobs States

Ø PD – queued

Ø R – running
Ø CF – configuring (resources for job are being prepared)

Ø Additional helpful flags

Ø squeue --user $USER – information about $USER’s jobs
Ø hpc-jobs -j <jobID> – information about specified jobs

Ø hpc-jobs -N – additional information about information about exec
nodes

Ø hpc-jobs -q/-r – information about queued (pending)/running jobs only

Ø hpc-jobs –h – help screen
Ø In addition scontrol, sinfo and smap give information about status of cluster

Ø scontrol show job <jobID> – information about <jobID> job
Ø scontrol show node <nodes_list> – information about nodes

SLURM queuing system – job monitoring 23

Ø In SLURM queues are called partitions

Ø scontrol show partitions <patition_name> – detailed information about
partition

Ø sinfo – lists all available nodes in all partitions

Ø sinfo –p <partition_name> – lists information only about partition
Ø default time in all plgrid* partitions is set to 15 minutes

* - partitions available after request

Partitions max time Information

plgrid-testing 1:00:00 for test runs (small number of jobs)

plgrid-short 1:00:00

plgrid 3-00:00:00

plgrid-large 1-00:00:00 big jobs (18+ nodes)

plgrid-now 12:00:00 interactive runs, max one job on one node

plgrid-long 7-00:00:00 *

plgrid-gpu 3-00:00:00 nodes with GPGPU*

plgrid-gpu-v100 3-00:00:00 nodes with V100 GPGPU*

plgrid-bigmem 3-00:00:00 big mem nodes*

Available partitions 24

Ø SLURM options provide information about job requirements to queuing system. They
could be

Ø given in command line sbatch [SLURM options]
Ø included in first lines of batch script with #SBATCH at start of line

SLURM – example Python job

#!/bin/env bash

Commands that will be run after start of the job
echo "Computation started on work node: "; hostname

module add plgrid/tools/python

./python-script.py > python.log

25

Ø sbatch command uses various options to provide queuing system with additional info
about the job

Ø -p <partition>, --partition=<partition> defines
partition

Ø -J <jobname>, --job-name=<jobname> give name to job
Ø -a, --array=<indexes> submit a job array

Ø --mail-user=<user’s e-mail> setting email for notifications

Ø --mail-type=<type> information when notifications should be send: at
beginning (BEGIN), end (END) or execution error (FAIL)

Ø -A <grantID>, --account= <grantID> information about
computational grant (if omitted job use default)

Ø When option -p is omitted job is queued into default partition (on Prometheus
plgrid)

SLURM – sbatch command options 26

Ø There are several recourses available for job

Ø -t, --time=<time> total maximal execution wall time of job

Ø -N, --nodes=<nodes> amount of nodes allocated to job
Ø -n, --ntasks=<ntasks> amount of tasks invoked in whole job

Ø --ntasks-per-node=<ntasks> amount of tasks invoked on each node
Ø --cpus-per-task=<cores> amount of cores per each task (i.e. when

using threads in OpenMP)

Ø --mem=<MB>amount of memory per node requested by job
Ø --mem-per-cpu=<MB> amount of memory per core requested by job

Ø Parameter formats

Ø time format: "min", "min:sec", "hours:min:sec", "days-
hours", "days-hours:min" and "days-hours:min:sec"

Ø memory: MB (=1024kB), GB (=1,024MB)

SLURM – job requirements specification 27

#SBATCH --job-name=serial.job
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --time=10:00
#SBATCH --mem=24000
#SBATCH --partition=plgrid
#SBATCH --account=plgtraining2021

module add plgrid/tools/intel

icc -xHost hello.c -o hello.x

./hello.x

SLURM – example serial job

Ø In SLURM job is sent to partition not to queue

Ø flag –p <partition_name> or --partition
<partition_name>

Ø partition for PLGrid users: plgrid*

28

#SBATCH --job-name=parallel-srun
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=2
#SBATCH --time=10:00
#SBATCH --mem-per-cpu=1GB
#SBATCH --partition=plgrid
#SBATCH --account=plgtraining2021

module add plgrid/tools/intel

icc -xHost hello.c -o hello.x

srun ./hello.x

SLURM – example parallel job

Ø srun inside batch job executes command ./hello.x on allocated resources
according to requested --ntask or --nodes*--ntasks-per-node flags

Ø variable SLURM_NTASKS holds information about number of tasks to be run

Ø each srun could request more than one core
Ø srun –nodes=x --ntasks=y --cpus-per-task=z …

29

#SBATCH --job-name=parallel-openmp
#SBATCH –-nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=24
#SBATCH --time=10:00
#SBATCH --mem-per-cpu=2GB
#SBATCH --partition=plgrid
#SBATCH --account=plgtraining2021

module add plgrid/tools/intel

icc -xHost –qopenmp hello.c -o hello.x

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

./hello.x

SLURM – example parallel OpenMP job 30

Ø When use OpenMP

Ø use --cpus-per-task=<cores_per_job> and
--nodes=1 for request of resources

Ø variable SLURM_CPUS_PER_TASK holds information about number CPUs
allocated to each task

#SBATCH --job-name=distributed-mpi
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=24
#SBATCH --time=10:00
#SBATCH --mem-per-cpu=1GB
#SBATCH --partition=plgrid
#SBATCH --account=plgtraining2021

module add plgrid/tools/impi

mpiicc -xHost hello.c -o hello.x

mpiexec -np $SLURM_NTASKS ./hello.x

SLURM – example parallel MPI job 31

Ø When software is parallelized using MPI

Ø use --ntasks-per-node=<cores_per_node and
--nodes=<no_of_nodes> for request of resources

Ø variable SLURM_NTASKS holds information about number of tasks to be run

#SBATCH --job-name=mpi-openmp
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=6
#SBATCH --time=10:00
#SBATCH --mem-per-cpu=2GB
#SBATCH --partition=plgrid
#SBATCH --account=plgtraining2021

module add plgrid/tools/impi

mpiicc -xHost -qopenmp hello.c -o hello.x

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

mpiexec -np $SLURM_NTASKS ./hello.x

SLURM – example parallel hybrid MPI/OpenMP job 32

Ø When hybrid MPI/OpenMP

Ø use --cpus-per-task=<cores_per_job> and
$SLURM_CPUS_PER_TASK for distribution of threads

Ø use --ntasks-per-node=<cores_per_node> for request of MPI
processes

Ø

Ø SLURM adds environmental variables which could ease performing computation

SLURM – environmental variables

Variable Description

SLURM_JOB_ID job identifier (jobID)

SLURM_SUBMIT_DIR dir, from which batch script was submitted to queuing
system

SLURM_NTASKS total number of tasks (i.e. MPI processes) in the current job

SLURM_NTASKS_PER_NODE number of tasks to be run on one node

SLURM_NODELIST list of nodes allocated to the job

SLURM_CPUS_PER_TASK number of cores requested per task

TMPDIR, SCRATCHDIR scratch file temporary directories for job

SCRATCH $USER’s root scratch directory on distributed Lustre file
system

SCRATCHDIR unique directory for the job on $SCRATCH

Ø Environment variables can be used to control distribution of job

Ø MPI jobs: SLURM_NTASKS to run MPI processes (using srun) variable

Ø OpenMP jobs: SLURM_CPUS_PER_TASK to run proper number of threads
Ø hybrid MPI/OpenMP jobs: combine SLURM_NTASKS to run MPI processes

and SLURM_CPUS_PER_TASK to expand threads

33

Ø Interactive work on cluster should be done using interactive jobs trough srun command

Ø srun -p plgrid -A <grant_id> -n 1 --pty /bin/bash

Ø User interface must not be used for computing

Ø High priority queue plgrid-now for interactive work

Ø one job on one node up to 12:00:00

Ø To attach terminal to running batch job

Ø srun -N1 -n1 --jobid=<jobID> --pty /bin/bash
Ø srun -N1 -n1 --jobid=<jobID> -w <nodeID> --pty /bin/bash
Ø sattach <jobid.stepid>

Ø Prometheus helper script ssh_slurm
Ø ssh_slurm <jobid> <dest_host> [command]

SLURM – interactive jobs 34

Ø Multiple jobs can be executed with identical parameters within one sbatch run as array
jobs when -a, --array=<indexes> option used

Ø sbatch –a n-m,k,l script.slurm (np. sbatch –a 0-9 or
sbatch –a 2,4,7)

Ø All jobs within array have same value of SLURM_SUBMIT_DIR and
SLURM_ARRAY_JOB_ID variables, but have additional unique identifier
SLURM_ARRAY_TASK_ID (number of job in array)

#!/bin/env bash
#SBATCH -a 0-4,9
#SBATCH --time=5:00
OUTPUTDIR=$SLURM_SUBMIT_DIR/$SLURM_ARRAY_JOB_ID
mkdir -p $OUTPUTDIR
cd $TMPDIR
hostname > task.$SLURM_ARRAY_TASK_ID

mv task.$SLURM_ARRAY_TASK_ID $OUTPUTDIR

Ø squeue –a – shows all jobs in array queued in system

SLURM – array jobs 35

Ø Dependencies between jobs can be added through --dependency=
<dependency_list> option

Ø Possible dependencies

Ø after:job_id[:jobid...] – job can begin execution after the specified
jobs have begun execution

Ø afterany:job_id[:jobid...] – job can begin execution after the
specified jobs have terminated

Ø afternotok:job_id[:jobid...] – job can begin execution after the
specified jobs have terminated in some failed state

Ø afterok:job_id[:jobid...] – job can begin execution after the
specified jobs have successfully executed

Ø expand:job_id – resources allocated to this job should be used to
expand the specified job

Ø singleton – job can begin execution after any previously launched jobs
sharing the same job name and user have terminated

SLURM – job’s dependencies 36

Ø GPGPUs are shown in SLURM queuing system as generic resources (GRES) with gpu
identifier.

Ø To check where GPGPUs are available

Ø sinfo -o '%P || %N || %G'
Ø To request GPGPUs for a job --gres=gpu[:count] has to be added to sbatch/srun

command

Ø srun -p plgrid-gpu -N 2 --ntasks-per-node=24 -n 48 -A
<grant_id> --gres=gpu[:count] --pty /bin/bash –l

Ø #SBATCH --gres=gpu[:count]
Ø GPGPUs are available only in plgrid-gpu and plgrid-gpu-v100 partitions
Ø GPUPUs available for job are listed in CUDA_VISIBLE_DEVICES environmental

variable

Ø Monitoring of GPGPUs usage could be done using nvidia-smi program
Ø nvidia-smi dmon
Ø nvidia-smi -l

SLURM – jobs with GPGPUs 37

Ø scancel command is used to delete unwanted jobs from queuing system

Ø scancel <JobID>

Ø Information about jobs which cannot be deleted using scancel should be sent to
system administrators through

Ø Helpdesk PLGrid PL

Ø https://helpdesk.plgrid.pl
Ø helpdesk@plgrid.pl

Ø directly to system administrators prometheus@cyfronet.pl

SLURM scancel – deleting jobs 38

https://helpdesk.plgrid.pl/
mailto:helpdesk@plgrid.pl
mailto:prometheus@cyfronet.pl

Ø pro-jobs/hpc-jobs and pro-jobs-history/hpc-jobs-history could
be used to monitor efficiency of jobs

Ø memory usage

Ø CPU usage

Ø pro-jobs/hpc-jobs – running and queued jobs

Ø pro-jobs-history/hpc-jobs-history – historical data of completed jobs

Ø pro-jobs* usage

Ø pro-jobs -N – additional information about nodes of job(s)
Ø pro-jobs –v – more detailed information about job(s)

Ø pro-jobs -j (<jobID>) – information only about job(s)

Ø pro-jobs –h – help screen
Ø pro-jobs-history –d <period> jobs completed in last <period> days

Job monitoring with pro-jobs*/hpc-jobs* 39

Best practices

Ø SLURM job batch script is always started in directory from which it was submitted to
queuing system. Access to that directory is also possible with SLURM_SUBMIT_DIR

Ø All batch jobs have got file in which data from standard outputs (both standard output
stream stdout and standard error stream stderr) is stored named slurm-
<JobID>.out
Ø those file should not be big (less than several MBs) and are stored in

SLURM_SUBMIT_DIR
Ø -o, --output=<file> and -e, --error=<file> - options to redirect

stdout and stderr

Ø When commands in SLURM script print big amount of data into output streams user should
redirect that data to file(s)
Ø for standard output stream (stdout): command > file.out
Ø for standard error stream (stderr): command 2> file.err
Ø for both streams to one file: command &> file.log

Ø $HOME and $PLG_GROUPS_STORAGE must not be used for heavy I/O computations

40

Ø During batch job submission user should always
Ø specify maximal time of job execution (parameter t/time)
Ø specify maximal RAM amount needed by job through mem (or mem-per-cpu)
Ø enable checkpoints
Ø for parallel computations use all cores on nodes when possible
Ø when big amount of data is used in computation always use $SCRATCH for files
Ø when big amount of data is going to be passed to standard output streams redirect it to

files and use $SCRATCH
Ø load runtime environment of software via module command in batch script
Ø do not load software modules in scripts loaded at user’s login (i.e..bashrc)

41Best practices

Computational grants

Ø Obtained through PLGrid Portal - https://bazaar.plgrid.pl/
Ø distinct grants for GPGPU

Ø Commands
Ø plg-show-grants (hpc-show-grants)
Ø plg-show-grant-details <account> (hpc-show-grant-

details <account>)
Ø plg-show-default-grant (hpc-show-default-grant)

Ø Accounting portal - https://accounting.plgrid.pl/

42

https://bazaar.plgrid.pl/
https://accounting.plgrid.pl/

Additional „filesystems”

ØMEMFS
Ø-C memfs
Ø$MEMFS
Øuse memory as filesystem (120GB max)

Ø Accessible only within node
Øavailable during JOB and lost after it finishes

ØLOCALFS
Ø-C localfs
Ø$SCRATCH_LOCAL
Øuse file as filesystem (512GB per node)
ØEach node has its own file! (not a shared filesystem)

Ø Accessible only within node
ØAvailable during JOB and lost after it is finished

43

Software compilation

Ø Always compile on computing node using
Ø batch job with sbatch
Ø interactive job with srun --pty bash
Ø use modules (also for libraries)

Ø Intel® MKL Link Line Advisor: https://software.intel.com/en-us/articles/intel-mkl-link-
line-advisor/

Ø when software could be used by various users consider global compilation by admins
Ø use IntelMPI (plgrid/tools/impi) and OpenMPI (plgrid/tools/openmpi)

modules build by admins
Ø check threads and processes bindings (i.e. KMP_AFFINITY environment variable)
Ø LOCALFS or MEMFS could speed up compilation

Ø Common compilation flags on Haswell CPUs
Ø GCC: -march=native, -fopenmp
Ø Intel: -xCORE-AVX2 (or -xHost), -qopenmp, -fma-/-no-fma
Ø PGI: -tp haswell, -mp, -fast, -Mipa=fast,inline, -i8
Ø http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-Haswell-1.pdf

Ø When in trouble contact admins trough PLGrid Helpdesk
Ø https://helpdesk.plgrid.pl/
Ø helpdesk@plgrid.pl

44

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/
http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-Haswell-1.pdf
https://helpdesk.plgrid.pl/

MPI vs OpenMP

➢OpenMP
➢API for writing shared-memory

software
➢Shared memory in threads
➢Requires support in compiler

(-qopenmp, -fopenmp)

➢MPI
➢Message Passing Interface

(send, receive, broadcast)
➢Every process has its own

isolated memory space
➢Can use more than one machine

via interconnect (eth, openid)

45

CPU CPU

Memory

CPU CPU CPU CPU CPU CPU

SMP
CPU CPU

Memory

Interconnect

CPU CPU

Memory

Interconnect

CPU CPU

Memory

Interconnect

CPU CPU

Memory

Interconnect

Cluster

Affinity 46

▪ Threads: Depends on compiler which was used to build software
▪ Intel: KMP_AFFINITY

▪ compact – nearest to free context (processor)
▪ verbose – extend verbosity

▪ GCC:
▪ GOMP_CPU_AFFINITY=0-23
▪ OMP_PROC_BIND=true
▪ OMP_PLACES={threads | cores | sockets | ll_caches |

numa_domains}
▪ OMP_DISPLAY_ENV = {TRUE | VERBOSE | FALSE}

▪ Processes (MPI): Depends of spawner (mpiexec, mpiexec.hydra, srun)
▪ --bind-to {core | numa | none}

▪ OpenMPI – works fine
▪ IntelMPI

▪ use environmental variables
▪ I_MPI_PIN_DOMAIN = {core | socket | numa | node |

cache | omp | auto}
▪ I_MPI_PIN_ORDER = {scatter | compact | spread |

bunch}
▪ use default SLURM settings

HPC Containers

Ø Usage
Ø module add plgrid/tools/singularity/stable
Ø singularity exec <container-name.sif> command

Ø Remarks
Ø Possibility pull Docker/Singularity container
Ø Usage of GPU though -nv flag
Ø Attach Prometheus folders using -B flag, i.e:

singularity exec -B /net biopython_latest.sif python3

singularity exec -B $SCRATCH:/tmp/scratch biopython_latest.sif

Ø Usage restrictions
Ø Creation of container requires root permissions, therefore cannot be done on Promehteus

– use PLGrid cloud instead

plgrid/tools/singularity

47

Python

Ø Versions available at Prometheus cluster
Ø GNU:

Ø 2.7.14, 3.6.5, 3.7, 3.8, 3.9
Ø plgrid/tools/python

Ø Intel:
Ø 2.7.14, 2.7.13, 2.7.14, 3.5.2, 3.5.3, 3.6.2, 3.6.5, 3.7, 3.7.7
Ø plgrid/tools/python-intel

Ø Special modules for tensorflow, scipy, numpy, mpi4py

Ø Usage
Ø module add plgrid/tools/python/<version>
Ø module add plgrid/tools/python-intel/<version>

Ø Remarks
Ø Build with MKL numerical libraries, support for GPGPU computing
Ø python-intel use conda package manager

Ø Usage restrictions
Ø only SMP mode (up to 24 computing cores@Prometheus)

Ø multi-node MPI only with libs such as py4mpi , Dask, Ray i.e.

plgrid/tools/python or plgrid/tools/python-intel

48

Python – package manager (pip) 49

Ø In Python you can easily manage your python modules via pip (pip3)
Ø pip list
Ø pip search numpy
Ø pip install numpy
Ø pip install –U numpy
Ø pip install –u numpy==1.10.1

Ø The problem is when you need more than one environment

Ø Solution is virtualenv
Ø virtualenv --system-site-packages my_new_env
Ø source my_new_env/bin/activate
Ø pip install –U whatever you want
Ø deactivate

Ø One directory for each environment – clean project management

Ø On HPC clusters computations are executed on worker nodes

Ø usually no GUI
Ø usually behind firewall

Ø Jupyter notebook/ Jupyterlab needs GUI in web browser

Ø Therefore there is a need to port tunnelling

Ø First submit job which create jupyter notebook and tunnel from worker node to
login node

Ø Establish tunnel from your computer to login node of cluster

Ø Open notebook in your favourite browser on your computer

Jupyer notebook @Prometheus 50

Ø SLURM job create

Ø jupyter notebook
Ø tunnel from worker node to login node

#!/bin/bash
#SBATCH --partition plgrid-testing

get tunneling info
XDG_RUNTIME_DIR=""
ipnport=$(shuf -i8000-9999 -n1)
ipnip=$(hostname -i)
user=$USER

module load plgrid/tools/python

start an ipcluster instance and launch jupyter server
jupyter-notebook --no-browser --port=$ipnport --ip=$ipnip pyton-notebook.slurm

Jupyer notebook @Prometheus 51

Ø User has to create second tunnel form user’s computer to login node of Prometheus
(pro.cyfronet.pl)

Ø ssh -N -L <local-port>:<worker-node-ip>:<remote-port>
plgusername@pro.cyfronet.pl

Ø info about tunnel details <local-port>, <worker-node-ip>,
<remote-port> are in log file of SLURM job

Ø plgusername – user’s logname

Ø After establishing both tunnels jupyter notebook is ready to start

Ø open webpage localhost:<local-port> in browser on your local
clomputer

Ø remember about token, which is listed in log file of SLURM job

Jupyer notebook @Prometheus 52

Creating own module 53

Ø Create directory for modules, eg. $PLG_GROUPS_STORAGE/your-team-
name/modules

Ø Create there subdirs for modules, eg. app/name

Ø Create Lua file for lmod, eg. 1.0.lua

Ø Set path for new module: module use $PLG_GROUPS_STORAGE/your-team-
name/modules

Ø Load module with: module load app/name/1.0

local pkgName = myModuleName()
local fullVersion = myModuleVersion()
whatis("Name: "..pkgName)
whatis("Version "..fullVersion)
whatis("Description: Abaqus")
local APPDIR = '/net/software/local/abaqus/2017'
depends_on('plgrid/tools/intel/18.0.0')
prepend_path('PATH', APPDIR .. '/bin’)
prepend_path(‚LD_LIBRARY_PATH', APPDIR .. '/lib')

GUI @ Prometheus - Pro-Viz

➢ Pro-viz is a new service for users of Prometheus that allows running GUI mode
of software using: TurboVNC https://www.turbovnc.org.

➢ To run TurboVNC you have to install Java JRE x86.

➢ At first step user need to run pro-viz on the cluster. To use it you need to load
software module of pro-viz:

module load tools/pro-viz

54

https://www.turbovnc.org/

Pro-Viz command syntax 55

pro-viz ...
start [-n CORES | -N NODES | -p PARTITION | -t TIME | -A

ACCOUNT | -r RESERVATION | -g GPUS | -C constraints | -m EMAIL-ADDRESS
] - start a new batch session

interactive [-p PARTITION | -t TIME | -A ACCOUNT | -r
RESERVATION | -g GPUS | -C constraints] - start a new interactive
session

list - list all sessions
attach JOBID - attach session to a working job with JOBID
password JOBID - generate access token for session JOBID
stop JOBID - terminate session JOBID
killall - terminate all sessions
help - duh

Pro-Viz command syntax

In this tutorial will be presented running one job on cluster Prometheus with
1 full working node, 24CPU. To do this you need to run commands:

➢ module load tools/pro-viz

➢ pro-viz start -N 1 -n 24 -p plgrid -A tutorial -t 03:00:00

➢ pro-viz password JOBID

56

PLGrid Infrastructure

57

PLGrid Infrastructure

Ø Projects:
Ø PL-Grid
Ø PLGrid Plus
Ø PLGrid NG
Ø PLGrid Core

Ø PLGrid Consortium
Ø Coordinator: ACC Cyfronet AGH
Ø Partners:

Ø Poznan Supercomputing and Networking Center, Poznań
Ø Interdisciplinary Centre for Mathematical and Computational Modelling, Warszawa
Ø Wroclaw Centre for Networking and Supercomputing, Wrocław
Ø Tricity Academic Computer Centre, Gdańsk
Ø National Centre for Nuclear Research, Świerk

58

http://www.plgrid.pl/en/

http://www.plgrid.pl/en/

Computing

Ø 5+ PTFLOPS
Ø 130 000+ cores

Storage

Ø 70+ PB
Ø archives

Ø backups

Ø distributed access
Ø fast scratch filesystems

Scientific software

Ø 750+ apps, tools,
libraries

Ø apps.plgrid.pl

Team work utilities

Ø project management
(JIRA)

Ø version control (Git)

Ø teleconferencing (Adobe
Connect)

Computational Cloud

Ø PaaS based on OpenStack

PLGrid 59

PLGrid - computational infrastructure for science

Ø The PLGrid Infrastructure is available free of charge for Polish researchers and all
those engaged in scientific activities in Poland

Ø On-line registration through PLGrid Users’ Portal – https://portal.plgrid.pl
Ø User verification based on Polish Science Database – https://www.nauka-polska.pl

On PLGrid Users Portal user can
Ø apply for access to tools and services
Ø monitor utilization of resources
Ø manage their computational grants and grid certificates

Access to all PLGrid resources through one account and one passphrase (or grid
certificate)

60

https://portal.plgrid.pl/
https://www.nauka-polska.pl/

PLGrid - accessing resources

Steps necessary to grant access to PLGrid resources

Ø Create account at PLGrid Users’ Portal – https://portal.plgrid.pl
Ø Create (Scientific) Affiliation
Ø Create Team
Ø Create Computational Grant for the team
Ø Apply for necessary services/entry points at Services and Applications

Catalogue - https://apps.plgrid.pl

61

https://portal.plgrid.pl/
https://apps.plgrid.pl/

EuroHPC

Ø The European High Performance
Computing Joint Undertaking
Ø 32 participating countries
Ø the European Union (represented by

the European Commission)
Ø private partners

Ø Goals
Ø deploy top-of-the-range

supercomputing infrastructures across
Europe to support European HPC users
wherever they are in Europe

Ø implement an ambitious research and
innovation agenda to develop
a competitive HPC ecosystem and
supply chain in Europe, which includes
hardware, software, applications but
also training and skills

62

https://eurohpc-ju.europa.eu/

https://eurohpc-ju.europa.eu/

LUMI Consortium

ØLUMI will be an HPE Cray EX
supercomputer manufactured
by Hewlett Packard Enterprise

ØPeak performance over 550
petaflop/s makes the system
one of the world’s fastest

Ø Available for users in
Ø LUMI-C Q4 2021
Ø LUMI-G Q1 2022

63

https://www.lumi-supercomputer.eu/

https://www.lumi-supercomputer.eu/

EUROCC

Ø National Competence Centres for
EuroHPC

Ø Goals
Ø Establishing network of national HPC

competence centers in all EuroHPC
member states

Ø Focus on cooperation between all
stakeholders in european HPC

Ø Training of scientific staff and
development of HPC software in both
academia and industrial environments

64

www.eurocc-project.eu

cc.eurohpc.pl

http://www.eurocc-project.eu/
https://cc.eurohpc.pl/

PRACE RI

Partnership for Advanced Computing
in Europe
▶Open access to world-class HPC systems to EU scientists
and researchers
▶ Variety of architectures to support the different scientific
communities
▶ High standards in computational science and engineering
▶ Peer Review at European level to foster scientific
excellence
▶ Robust and persistent funding scheme for HPC supported
by national governments and European Commission (EC)
▶ Support the development of intellectual property rights
(IPR) in Europe by working with industry and public services
▶ Collaborate with European HPC industrial users and
suppliers
▶ Training and Outreach for HPC scientist and students

65

https://prace-ri.eu/

https://prace-ri.eu/

PRACE | members
Hosting Members
▶ France
▶ Germany
▶ Italy
▶ Spain
▶ Switzerland

General Partners (PRACE 2)
▶ Belgium
▶ Bulgaria
▶ Cyprus
▶ Czech Republic
▶ Denmark
▶ Finland
▶ Greece
▶ Hungary
▶ Ireland
▶ Israel

▶ Luxembourg

▶ Netherlands

▶ Norway

▶ Poland

▶ Portugal

▶ Slovakia

▶ Slovenia

▶ Sweden

▶ Turkey

▶ United KingdomObservers

▶ Croatia

▶ Romania

PRACE | Tier-0 Systems

MareNostrum: IBM
BSC, Barcelona, Spain

JUWELS: BULL Sequana X1000
GAUSS @ FZJ, Jülich, GermanyJoliot Curie: BULL Sequana X1000

GENCI/CEA, Bruyères-le-Châtel, France

SuperMUC-NG: Lenovo ThinkSystem
GAUSS @ LRZ, Garching, Germany

MARCONI: Lenovo
CINECA, Bologna, Italy

Piz Daint: Cray XC50
CSCS, Lugano, Switzerland

PRACE | Tier-1 Systems

ARCHER: Cray XC30
EPCC, Edinburgh, UK
#252 Top 500

Puhti: BullSequana X400
CSC, Espoo, FinlandSalomon: SGI ICE X

IT4I, Ostrava, Czech Republic
#282 Top 500

Beskow: Cray XC40
KTH, Stockholm, Sweden
#151 Top 500

Cartesius: Bull Bullx B720/B710
SURFSara, Amsterdam, The
Netherlands
#455 Top 500

Prometheus: HPE Apollo 8000
ACC Cyfronet AGH-UST, Krakow, Poland
#174 Top 500

Free-of-charge required to publish results at the end of the award
period

www.prace-ri.eu/call-announcements/

Criterion:

Scientific Excellence

Assessed by an

improved review

process

Preparatory Access (2 to 6 months)

SHAPE Programme (2 to 6 months)

Distributed European Computing Initiative (Tier-1 12 months)

PRACE | project access

Project Access (12, 24 or 36 months)

69

PRACE | project access

Open Call
for

Proposals

Technical
Review

Scientific
Peer Review

Technical experts
in PRACE systems
and software

Access
Committee &
Resource
Allocation
Committee

Priorisation
+

Resource
Allocation

Project
+

Final
Report

ResearchersResearchers with
expertise in
scientific
field of proposal

~ 2 Months ~ 3 Months Up to 3 years

Right
to reply

http://www.prace-ri.eu/prace-project-access/

70

PRACE | project access
▶ 24th Call for Proposals for Project Access

▶ Opening of the call: 9 September 2021

▶ Closing of the call: 2 November 2021, 10:00 CET

▶ Allocation period for awarded proposals: April 2022 – March 2023

▶ Type of Access: Project Access and Multi-Year Project Access

▶ Applications for Project Access must use codes that have been previously tested and

▶ demonstrate high scalability and optimization to multi-core architectures

▶ demonstrate a requirement for ensemble simulations that need a very large

amount of CPU/GPU

71

PRACE | preparatory access

Open Call
for

Proposals

Technical
Review

Award
Decision & Project

start

Project
+

Final
Report

Administrative
check

PRACE staff ResearchersPRACE
Board

of
Directors

Open call for
scalability and
optimisation

Cut-off each
3 months for
PRACE support
requests

2, 6 or 12
months

Technical experts in
PRACE systems and

software

1 week

PHASE I PHASE II PHASE III PHASE IV

http://www.prace-ri.eu/prace-preparatory-access/

72

PRACE | Distributed European
Computing Initiative

▶ 17th Call for Proposals for DECI (Tier-1)

▶ Opening of the call: 16 December 2020

▶ Closing of the call: 31 January 2019, 18:00 UTC

▶ Allocation period for awarded proposals: June 2021 – May 2022

▶ Type of Access: DECI (Tier-1)

▶ Applications for DECI:

▶ projects requiring access to Tier-1 resources that are not currently available in

PI’s own country or for international collaborations

▶ individual projects limited to around 5 million machine hours (2.5 million

machine hours in average)

73

Summer of HPC (programme for
undergraduate and postgraduate students)

PRACE Training and Events portal

6 PRACE Advanced Training Centres (PATCs)
and 4 Training Centres (PTCs)

PRACE training events: Seasonal Schools,
International HPC Summer School, On-

demand training events

CodeVault, Massive Open Online Courses
(MOOCs)

provide a sustained, high-quality training and education service for the European HPC
community

PRACE | Training and Outreach activities

Training topics
Different levels of training

▶ Basic, intermediate, advance
High performance computing
▶ Parallel programming
▶ Accelerators

▶ Performance optimization
Domain-specific topics
▶ Simulation software

▶ Visualization
▶ Data intensive computing

74

► www.training.prace-ri.eu

► Single hub for the PRACE training events,
training material and tutorials

► PATC Programme 2020-2021
► Online training events due to COVID19
► New courses on forward-looking topics
► New hardware and programming

paradigms
► Data science
► Collaboration with CoEs on several

courses

PRACE | Training and Events Portal

"Prace realizowane przy wsparciu Ministerstwa Nauki i Szkolnictwa Wyższego,
decyzja nr DIR/WK/2016/18"

75

http://www.training.prace-ri.eu/

76

