
Bash Workshop Handout

Accessing remote machines

ssh (secure shell)

ssh tutorialXX@athena.cyfronet.pl connect to the Athena supercomputer using a tutorial
account

Directories
absolute path - starts with “/” and contains all upper directories

e.g.: /net/people/plgrid/tutorialXX/directory

relative path - contains a path starting in the current directory
e.g.: tutorialXX/directory (current directory: /net/people/plgrid)

pwd (print working directory)

pwd shows an absolute path of current directory, but includes links

pwd -P shows true absolute path of current directory

Example in the same directory:
pwd -> e.g.: /net/people/plgrid/tutorialXX/scratch
pwd -P ->e.g.: /net/ascratch/people/tutorialXX

cd (change directory)

cd PATH move to directory specified by PATH, PATH can be absolute or relative

cd .. move to directory above

cd ../.. move to the directory two lvls above

cd move to home directory, synonyms: cd ~, cd $HOME

cd ../PATH move to a subdirectory of a directory above

cd - return to last directory visited

cd . move to the current directory (do nothing)

cd -P . move to the current directory and remove links from path (pwd will print true path from
now on)

1

ls (list)

ls list files and directories in current directory (you can mix the flags)

ls PATH list files and directories in a subdirectory

ls -1 ls line by line

ls -t ls sorted by date modified, newest first

ls -a ls including hidden files (starting with .)

ls -l ls more information about each element (e.g. size of files in bytes)

ls -h ls normal units (MB etc.)

Arrow up - use the arrow key “up” to use the previous command. Use it multiple times to find older
commands. Arrow down to return to the newer command.

Ctrl+R - use the “Ctrl” + “R” keys to enter “reverse-i-search” mode. Write a part of a command to find an
older command by name.

* (wildcard) - use it to replace parts of a name of a file / directory while using other command, cmd will
autocomplete it

e.g. cd direct* is going to work as cd directory

? - works like wildcard, but only one character at a time

Tab - use the “Tab” key to autocomplete the name of a file / directory / command while writing it.

--help - write this flag after any command to get info about its flags (works for most commands).

Creating and removing files

mkdir (make directory)

mkdir NAME create a directory in a current directory named NAME

mkdir -p NAME mkdir but will not return an error when directory NAME exists

touch

touch EXISTING_NAME update the modification time of a file to now

touch NEW_NAME create a file name NEW_NAME

touch NAM* touch all existing files starting with NAM

2

cp (copy)

cp FILE NAME copy a file and change its name to NAME

cp FILE PATH/. copy a file to a directory in PATH and don’t change its name

cp FILE
PATH/NAME

copy a file to a directory in PATH and change its name to NAME

cp -r DIR NAME copy a directory and change its name to NAME, unless a directory NAME exist,
then copy it inside, the result will be: NAME/DIR

cp NAME{,_backup} - will add “_backup” to the copy’s name

mv (move)

mv NAME NNAME change file’s or directory name to NNAME

mv NAME PATH/. move a file or a directory to PATH and don’t change its name

mv NAME
PATH/NNAME

move a file or a directory to a directory in PATH and change its name to
NNAME

rm (remove, use with caution!)

rm FILE permanently remove a file in current directory

rm -r DIR ! permanently remove a directory, all its subdirectories and all files inside it

rm -f FILE ! permanently remove a file and ignore all warnings about it

rm -rf DIR !! permanently remove a directory, all its subdirectories and all files inside it without any
warnings

rm -rf * !!! permanently remove everything in current directory and all subdirectories - will ignore
all warnings | do not use unless you are sure what you are doing

rm -rf /* !!! permanently remove everything on your machine (e.g. your computer)* - will ignore all
warnings | do not use unless you are sure what you are doing

*Command rm will not remove any files that you do not have access to. This means that this command will
not delete all files from Athena supercomputer, it will exclusively find all your files and remove them.

Ctrl+C - use the “Ctrl” + “C” keys to stop a process. Should you use rm by accident, these keys let you stop
it.

Ctrl+D - use the “Ctrl” + “D” keys to log out of the machine (Athena). The console must be empty for that to
work. Combination Ctrl+C, thenCtrl+D should force the log out.

3

Reading files

echo

echo “STRING” print a string onto console with new line at the end

echo -n “STRING” echo without new line at the end

echo “STRING” > FILE ! replace entire text of a file with one string

echo “STRING” >> FILE add a string to the end of a file

cat (concatenate)

cat FILE print contents of a file to console

cat FILE > FILE2 ! replace FILE2 with the FILE. If FILE2 does not exist, this creates a copy of the
FILE named FILE2

cat FILE >> FILE2 add contents of FILE at the end of FILE2

cat FILE1 FILE2 print two files at the same time

less (print less)

less FILE print contents of a file to console, but only the portion that fits it

Pipe - use the pipe key “|” to transfer output of one command to another.

wc (word count)

wc -l FILE count the number of lines of a file (-l is “L” not “i”)

cat FILE | wc -l count the number of lines of a file - completely equivalent; pipe transfers the
output of cat to wc

sort

cat FILE | sort print the lines of a file sorted by the alphabetical order

cat FILE | sort -n sort numbers lowest to highest

cat FILE | sort -r sort but reverse order

head / tail

head FILE print first 10 lines of a file (10 last lines for tail)

head -n N FILE print first N lines of a file (N last lines for tail), synonym: head -N FILE, where
N is a number of lines (same for tail)

4

grep (global regular expression print)

grep “string” FILE search a FILE for a string and print every line it is found in, case sensitive
(you can mix the flags), you can use wildcard * in place of part of the
string

grep -i “string” FILE grep but ignore case (StRIng = string)

grep -o “string” FILE grep but print only the string each time it is found (not the entire line)

grep -v “string” FILE grep but print every line that does not contain the string

grep -r “string” FIL* grep but recursive, search the directory and subdirectories to find any file
that matches FIL* and grep it. The name of the file will proceed the output
of each file (the name can be hidden by -h flag)

grep -c “string” FILE count in how many lines the string appears

grep -A N “string” FILE grep but also print N next lines after the string

grep -B N “string” FILE grep but also print N previous lines before the string

grep -C N “string” FILE grep -A and grep -B at the same time, synonym: grep -N, where N is the
number of lines before and after

flags: -E, -F, -G, -P, -e these flags signify different types of regular expressions; this is advanced
stuff beyond the scope of this workshop

mc -v (mc viewer)

mc -v FILE view a file. Move down or up using arrow keys. Page-up / Page-down to move faster.
Home / End to go to the top / bottom of a file. More below.

Permissions

chown (change ownership)

chown USER FILE change FILE’s ownership to USER

chown USER:GROUP FILE change FILE’s ownership to USER and allow GROUP to access it

chmod (change mode)

chmod u+x FILE grants you (the user) permission to execute the file

chmod a+rx FILE grants all people read and execute permission (but not to edit)

5

Transfer files to or from remote

tar (Tape archiver)

tar -zvcf TAR.GZ FILES* compress the files matching FILES* to archive TAR.GZ

tar -xvf TAR.GZ unzip the archive TAR.GZ in current directory

scp (secure copy protocol)

scp -Cpv LOGIN@REMOTE.MACHINE:/path/on/the/remote/machine/FILE* /path/on/your/machine/. -
copy files matching FILE* on remote to your machine

scp -Cpv /path/on/your/machine/FILE* LOGIN@REMOTE.MACHINE:/path/on/the/remote/machine/. -
copy files matching FILE* on your machine to the remote

scp -C this flag compresses the file during transfer, so its smaller

scp -p this flag preserves the original modification and creation time of the files

scp -v this flag gives out more information about the process

Find files

find

find . -name FILE find the FILE in current directory or any sub-directory

find . -iname FILE find but case insensitive

find . -maxdepth N -iname
FILE

find but will not enter sub-directories N-lvls deep. 1 means that will not
enter any (global flags before -iname flag)

find . -type f find all files recursively

find . -type d find all directories and sub-directories

find . -mindepth N -iname
FILE

like -maxdepth but will enter only sub-directories after N-lvls deep

The find is a little advanced, so only basics are covered here.

6

Visual File Manager

mc (midnight commander)

mc -S “dark” opens midnight commander interface

The following keys are usable inside the mc interface.
You can still use the console inside mc, but the output will be hidden from you.

Arrow key up/down choose a file or directory

Page Up/Down choose a file or directory faster

Home/End get to the top/bottom of the file list

Enter on directory: enter that directory,
on /..: enter the directory above

TAB change panel (left or right)

F10 closes the interface

F7 create a directory, like mkdir

F9 special options

Following assume, you have a file highlighted.

F3 view a file

F4 edit a file (mcedit)

F5 copy a file (works on directories too), like cp

F6 move a file (works on directories too), like mv

F8 remove a file (works on directories too)

Alt+Enter paste the name of a file to command line

hold Shift + press
Arrow key

select group of files (and/or directories)

Other keys

Alt+H search previous commands used inside mc; similar to Ctrl+R outside

Alt+I make the panels the same directory (if used on left, then both panels are now
in left’s directory)

Alt+O on directory: open that directory in the other panel
on file: open the directory above in the other panel

Enter on executable file: run the file

7

Writing files

mc -e (mcedit)

mc -S “dark” -e FILE opens a FILE to edit using mcedit, synonym: F4 inside mc

mc -S “dark” -v FILE opens a FILE to view, synonym: F3 inside mc

Keys inside mcedit

double ESC close a file, synonym: F10

Ctrl+U undo the last change, basically like Ctrl+Z on Windows

F2 save the changes

F3, Arrow keys, F3 select text, start/end selection with F3 select with Arrow keys, synonym:
hold Shift + press Arrow key

F4 search and replace a string

F5 copy selection to where the cursor is currently

F6 move selection to where the cursor is currently

F7 search for a string

F8 delete the selection, Ctrl+U will bring it back

F9 special commands

F12 save-file-as

Shift+Insert paste text from outside mc that you have highlighted

Ctrl+Shift+V paste text from outside mc that you copied using Ctrl+C outside

Ctrl+F copy selection to a file, you need to use these keys in sequence;
synonyms : F9, F, Y

Shift+F5 insert a file where the cursor is, synonym: F9, F, I (“i”)

Alt+U use any outside command inside mcedit and print the output where the
cursor is

Home/End go to the start/end of current line

Ctrl+Home/End go to the start/end of the file

Ctrl+R redo the last undo, reverse Ctrl+U

Alt+L go to a line by number

8

Scripting
& - use the “&” at the end of a command to run it in the background.

ps (process status)

ps shows all running processes, you can see if a background process has
ended, gives the PID of running processes

kill

kill PID kills a process running in the background

kill -9 PID ! use with caution, like kill, but you are able to kill a process that couldn’t
be canceled using kill

bash (bourne again shell, explanation)

./script.sh run the script.sh (must have a shebang at the start and be executable (see
chmod on page 5), synonym: Enter in mc

Inside the script

#!/bin/bash a shebang, put it on the start to make the file a bash script

this is used for comments, anything after “#” up to end of a line will not be
executed, highlighted in dark orange

$VARIABLE “$” signifies variables, highlighted in light green

for, in, do etc. keywords, highlighted in yellow

cd, cp, mkdir etc. commands, highlighted in blue

“” or ‘’ quotation marks signify strings, highlighted in dark green

`` backquote, grave accent (pl. grawis), another way to subshell, highlighted
in red with black background (black is invisible in mc -S “dark” though)

; newline marker for scripting, you need a new line before “do” so you can
use “;” to make it into one line

Command line scripting, one-line scripting

code ; code ; code you can write a script in the command line, using “;” as a new line. You do
not need a shebang.

9

bash (bourne again shell, programming language)

sleep NJ make the script wait for time N units of time J (default: s)

echo “Hello World” script will print “Hello World”

date script will print out current date

VARIABLE=VALUE to assign a value to a variable you need to use equal sign “=” without
spaces before or after

echo $VARIABLE script will print what is stored in a VARIABLE

DIR=$(pwd -P)
so called subshell, allows you e.g. to store the output of a command (pwd
-P) in a variable

DIR=`pwd -P`

b=$((1 + a)) The $((...)) construct allows simple arithmetic on integers. a is variable,
but does not need “$”, because it's within $((...)).

for i in 1 2 3 ; do
echo $i
sleep 5
done

for loop, the variable $i will be assigned values 1, then 2, then 3 and each
time will be printed, each print will be space out by 5 seconds
for loop must end in “done”

for i in `seq 1 10` ; do
…

seq command inside subshell will produce a sequence of numbers from 1
to 10 (1 2 3 4 … 10)

for i in `seq 1 2 10` ; do
…

seq here will produce a sequence of numbers from 1 to 10, skipping every
other number (1 3 5 7 9)

for i in a b abc ; do
…

this will go through “a”, then “b”, then “abc”

for i in */ ; do
…

this will loop through all directories in current directory; without “/” will go
over files too

for i in $(ls -d */); do
…

this will loop through all directories in current directory

10

