
HPC Introduction Handout

Accessing remote machines

ssh (secure shell)

ssh <login>@ares.cyfronet.pl connects to the Ares supercomputer using plgrid account,
login starts with "plg-"

tar (Tape archiver)

tar -zvcf TAR.GZ FILES* compresses the files matching FILES* to archive TAR.GZ

tar -xvf TAR.GZ unzips the archive TAR.GZ in current directory

scp (secure copy protocol)

scp -Cpv LOGIN@REMOTE.MACHINE:/path/on/the/remote/machine/FILE* /path/on/your/machine/. -
copy files matching FILE* on remote to your machine

scp -Cpv /path/on/your/machine/FILE* LOGIN@REMOTE.MACHINE:/path/on/the/remote/machine/. -
copy files matching FILE* on your machine to the remote

Environmental variables

export, unset, env, source
Regular variable is only callable from current terminal, while environmental variable (env var) propagates
to any script run from the current terminal

export NAME=VALUE sets a new or existing environmental variable NAME to VALUE (string, int or
float)

unset NAME unsets a regular/env variable, so it cannot be called with $NAME

NAME=VALUE sets a new/existing regular variable NAME to VALUE (string, int or float)

echo $NAME print the value of a regular/env. var

export
PATH=$PATH:/path/to/dir

adds a path to the env. variable called PATH; allows to access any script from
it as a command

source script.sh runs the script as if you used ./script.sh and ALL (regular and env) variables
are added to the environment of your current terminal

env prints all env vars in your current environment; grep it to look for specific one

1

useful env vars

$PATH stores paths, where system looks for executable scripts; a script in
$PATH is callable like a command

$HOME stores your home directory

$SCRATCH stores your scratch directory

$PLG_GROUPS_STORAGE stores directory containing all project/plgrid team common directories;
find directory of your team(s) using hpc-fs, it starts with "plgg-"

$LD_LIBRARY_PATH stores paths, where system looks for libraries to dynamically link with
software you are building; only use if you are about to install software

$USER stores the current user's name

$PYTHONPATH stores paths, where python looks for python packages

$MODULEPATH stores paths, where lmod looks for files describing modules

the ~/.bashrc file
! DO NOT CHANGE the .bashrc file on our clusters, unless you know what you are doing and have read
precautions below

Explanation: .bashrc is a hidden file in your home dir that gets sourced at the start of each of your sessions
on the cluster, adding commands there will run them at the start of your session, adding variables will add
them to your environment at the start of your session.

Precautions:
! Before you add anything to your .bashrc, store a clean copy of the one you had the first time you logged in
somewhere safe. For example, use the command cp ~/.bashrc ~/bashrc-backup
! Please keep in mind that using this file is very likely to cause problems; people tend to forget about what
they've put in the .bashrc or they do not know what effect it might have on their calculation. When you call
commands, variables and modules inside .bashrc, they might interfere with commands, variables and
modules called from the command line.
! When something breaks and you have modified your .bashrc at any point, before asking Helpdesk for
help, try switching your modified .bashrc with the backup you made and see if it fixed the issues you are
having. Commands to do it would be:
mv ~/.bashrc ~/bashrc-modified ; cp ~/bashrc-backup ~/.bashrc
And then retry running what did not work. Tell Helpdesk if you did that procedure when you report a
problem.

!! In a mild case, you might pollute your environment and break a software so you could not use it until the
env is cleared.

!!! In a bad case, putting something that should not be there might break your account and require Cyfronet
intervention to fix it; e.g. if you put exit in your .bashrc file you won't be able to login to your account back,
since you are just going to log out everytime you login, only our admins will be able to fix that

2

Files system and queueing system

basic Slurm commands
These commands come with Slurm. They are accessible on any slurm-based cluster, even outside plgrid.*
*Some conditions may apply, e.g. squeue might print all jobs of all users instead team-only.

squeue shows all jobs your team(s) is(are) running currently (including you), this
includes its status Pending/Running etc., jobID and time it is running

squeue --me squeue, but only your current jobs; synonym: squeue --user=$USER

squeue -A GRANT squeue, but only the specified grant

sbatch script.batch sends the job specified in the file script.batch to the queue; more about it
in the batch scripts section; remember to always use sbatch in the dir
your script is; you cannot run sbatch from a running session

scancel JOBID cancels the job with the jobID

scancel -u $USER cancels all your jobs

scancel -n NAME cancels jobs with the specified name

srun allows to run interactive sessions and subprocesses

scontrol show jobid JOBID shows more information about a running job with the jobID

Cyfronet-made commands
These commands were made by Cyfronet staff for your convenience. They are only usable on our clusters.

hpc-[Tab][Tab] tabbing with "hpc-" will allow you to see all the Cyfronet commands

hpc-fs shows you how much space was used on HOME, SCRATCH and the common
directory of you team, additionally you see how many files you have and what
teams you are in without looking on portal plgrid

hpc-grants shows all current grants you have access to and information about them

hpc-scratch a command used to switch to our new scratch introduced in 2024 (afscra)
https://docs.cyfronet.pl/display/~plgpawlik/New+scratch+space+on+Ares

hpc-jobs similar to squeue --me, but has more performance information

hpc-jobs-history like hpc-jobs, but for completed jobs; newest at the bottom

hpc-grant-jobs GRANT like hpc-jobs, but only for the specified GRANT

hpc-modules ARCH prints the modules tree of selected architecture; as of 2024 this is a
Helios-only command

ssh_slurm jobid node attaches current terminal to a running session on a given node

3

https://docs.cyfronet.pl/display/~plgpawlik/New+scratch+space+on+Ares

Batch scripts (sbatch)

usage of common terms in HPC

job a set of tasks that the cluster will do, it's specified by a script; unlike a script it also
specifies resources to be allocated for the job and is sent to a queueing system rather
than being run as is

sequential (about software) means that each process is being done one at a time; some
algorithms and types of data can only be calculated this way, forcing the software to be
partially or fully sequential

parallelized (about software) able to separate the input data into independent parts and combine
the results when each has been processed

parallelism means that multiple processes are being done at the same time; high parallelism is the
main feature of supercomputers; to achieve parallelism the software must be
parallelized too

core
(CPU)

a fully functioning processor integrated with other cores to maximize performance;
regular laptop in 2024 has four cores, each can run a different process at the same time
(basic parallelism)

node a collection of cores physically connected via high speed bus; calculations within one
node are computed with highest efficiency

cluster a collection of nodes connected via high speed network; it works like multiple
computers connected to each other, allowing them to share the workload

supercomputer a fancy and prestigious name for a cluster

task a unit of computational work that can be run independently, each runs at least 1 thread;
more in the sbatch options subsection

thread the smallest unit of computational work that can be run independently; each core runs
exactly 1 thread at a time*

GPU an accelerator, that works best with highly parallelized software (requires to be
compiled with GPU support)

*It is possible to run 2 threads/cpu using what's called hyper-threading.

job-specific environmental variables

$SLURM_SUBMIT_DIR stores the path to the directory from which the sbatch was run

$SCRATCHDIR stores the path to a directory on SCRATCH where the calculation
should be run; $SCRATCH/slurm_jobdir/<jobid>/tmp.<nodename>

$SLURM_JOB_ID stores the jobID of the current job

$SLURM_NTASKS stores the number of tasks allocated for the job

4

sbatch options
bash vs batch - the difference is that a bash script is run wherever you run it, while batch script is sent to
the queueing system using the sbatch command.

Writing a batch script requires adding lines specifying sbatch options in the script after the shebang and
before other commands. Each line contains an option (e.g. -N) followed by its argument (e.g. 1) and
preceded by the signifier #SBATCH, e.g. #SBATCH -N 1. One option per line.

Options below can be given in a batch script or to the command sbatch itself. The latter overwrites the
former. The same options can also be given to srun when

-J NAME sets the name of the job (visible using squeue); synonym: --job-name

-N VALUE sets the number of nodes to allocate; synonym: --nodes

-A GRANT-ALLOC sets which grant's resources to use in the job and what allocation to use
(e.g. cpu, cpu-bigmem); synonym: --account

-p NAME sets which queue to sent to job to (e.g. plgrid), synonym: --partition

-t D-HH:MM:SS sets the time limit of the job, synonym: --time

--ntasks-per-node=VALUE sets the number of tasks per node to allocate*;
each task needs at least 1 core, so allocating n tasks automatically
allocates n cores to the job;
allocating n nodes requires allocating at least n tasks, so Slurm will
automatically decrease the number of nodes to match the number of tasks;

--cpus-per-task=VALUE sets the number of cores per task to allocate*

-n VALUE sets the number of total tasks used in the job; synonym: --ntasks

--mem=VALUE[UNIT] sets the total memory allocated for the job; default unit is MB, a very useful
is GB, e.g. --mem=180GB

--mem-per-cpu=
VALUE[UNIT]

sets the total memory allocated for each core; default unit is MB and you
cannot use floats only integers, e.g. --mem-per-cpu=3750 (this is 3.75GB)

-o FILE save the terminal outputs of the job to a file; default=slurm-<jobid>.out; if
the application does not print anything to terminal, the output will be empty;
synonym: --output

-e FILE save the terminal error outputs of the job to a file; this will usually contain
errors, system warnings and module loads; default=slurm-<jobid>.out;
synonym: --error

--reservation=NAME uses the given reservation, only if you have one (like on this training)

--gres=gpu:N uses N GPUs for the job

*The product of core/task and tasks/node cannot be bigger than the maximum number of cores on a node
(Ares: 48, Athena: 128, Helios: 192).

5

Scientific software management (modules)
Modules allow you to access specific software when you need it without cluttering your environment. Our
modules manager is called lmod.

flat vs hierarchical (Ares vs Athena)
Flat module tree (used on Ares) allows you to load any module regardless of what it will do to your
environment. You need to be aware of possible inconsistencies and prevent them, otherwise you might run
your application with lower efficiency or break it. Additionally Ares changes names to lowercase.

Hierarchical module tree (used on Athena) allows you to load only the modules that are available by the
compiler/toolchain modules you have loaded in your environment. This approach prevents inconsistencies
and tells you exactly what tools the application was built with. The cost is that you need to load these
additional modules first. Changing names to lowercase is impossible with hierarchical module trees.

Helios actually uses two separate hierarchical module trees, each for one architecture (x86 (cpu) and ARM
(gpu)).

ml (module; lmod commands)

ml NAME loads the default version of the module called NAME; synonyms: module add
NAME, module load NAME, ml load NAME, ml add NAME

ml NAME/VERSION loads the specific version of the module called NAME

ml purge unloads all modules; use it to clean up before loading new modules

ml lists currently loaded modules; synonyms: ml list, module list

ml avail NAME prints the list of all versions of the module called NAME; on hierarchical it prints
only the ones you can actually load with current modules loaded

ml avail prints the list of ALL loadable software; on hierarchical it prints only the ones you
can actually load with current modules loaded

ml spider NAME like ml avail NAME, but shows the versions you cannot load right now, useful on
hierarchical

ml spider
NAME/VERSION

prints useful info about the specific version of the module called NAME, including
what dependency modules to load it on hierarchical

ml use /path/to/dir adds /path/to/dir to $MODULEPATH; used when adding custom modules

ml ML-bundle (machine learning kit for python; Helios-only)
ML-bundle is a special module made by Cyfronet staff to aid in building python machine learning
applications. It is available only on Helios' ARM architecture (gpu).

6

Python virtual environment

python3 -m venv
Virtual environment is shortened to just venv.

ml python/3.11.5-gcccore-13.2.0 loads specific python version (on Ares)

ml GCCcore/13.2.0 Python/3.11.5 loads specific python version (on Helios)

python3 -m venv NAME creates an empty virtual environment called NAME, it will be a
directory with the same name containing amongst others bin/activate

source NAME/bin/activate activates the virtual environment called NAME, the current directory
must contain the venv or you would need to add the path to it;

deactivate deactivates current venv

python3 -m pip --require-virtualenv freeze - prints what packages are in the venv

python3 -m pip --no-cache-dir --require-virtualenv install NAME - installs the packages called NAME;

export PYTHONPATH=$PYTHONPATH:/path/to/dir - adds /path/to/dir to the list of paths where python
looks for packages

ML-bundle is a special module made by Cyfronet staff to aid in building python machine learning app

7

creating and using virtual environment instructions
Here is the instructions:

1. Set up an interactive session
2. Choose python version
3. Create virtual environment
4. Install packages to the venv
5. Use the venv

1) Interactive session
On a login node, run the interactive session with:

srun -N 1 --ntasks-per-node=1 -t 1:00:00 -p plgrid-now -A <grantname>-cpu --pty /bin/bash

After a while the resources should be allocated. Correct output should look like this:
srun: job 12377732 queued and waiting for resources
srun: job 12377732 has been allocated resources

The jobID of this job is 12377732.
When the session starts, the prompt will change to e.g.:

[ares][plguser@ac0766 ~]$

2) Choosing python version
Available versions of python can be view with:

ml spider python

As long as the default version works, use that one. Only use the older version if you encounter compatibility
issues. At the end there is a paragraph about reloading a python version.
Load the python module:

ml python/3.12.3-gcccore-13.3.0

You will need to load this module everytime BEFORE you use your virtual environment. Remember that a
venv created with one python version would not work with another one.

3) Create the virtual environment
If you create the venvs for the first time it is advised to make a directory for them, otherwise skip the mkdir
command. Start by making a directory in your team's storage directory:

cd $PLG_GROUPS_STORAGE/<groupname>
mkdir -p pythonenvs
cd pythonenvs

To create venv called myenv use:

python3 -m venv myenv

8

4) Installing packages to virtual environment
This key step should always be performed on a computing node. Therefore, the first step is to open the
interactive session. If you have performed steps 2) and 3) without 1), you need to load the selected python
module again after starting up the interactive session.

Regardless of that, use the next command to activate the virtual environment as long as your current
directory is pythonenvs made before.

source myenv/bin/activate

The prompt should reflect the activation of the venv:
(myenv) [ares][plguser@ac0766 pythonenvs]$

You can begin installation of e.g. packages named requests:

python3 -m pip --no-cache-dir --require-virtualenv install requests

Python will automatically install all the dependencies and the package itself. Use the same command to
install more packages and use the following command to view what is already installed in the venv:

python3 -m pip --require-virtualenv freeze

After successful installation, you can leave the interactive session with Ctrl+C and then Ctrl+D. The prompt
should reflect annulation of the session:

[ares][plguser@login01 pythonenvs]$
as you are on the login node now.

5) Using the virtual environment

To use the venv you first load the correct python module and then activate the venv by sourcing either
relative or absolute path to myenv/bin/activate.

ml python/3.12.3-gcccore-13.3.0
source $PLG_GROUPS_STORAGE/<groupname>/pythonenvs/myenv/bin/activate

Adjust to your case the groupname, pythonenvs and myenv to fit what you set up in previous points.

You can actually activate the venv on the login node, but DO NOT run calculations without a compute node.

Bonus) Reloading python version
To ensure that the old module is unloaded, please run:

ml purge

This command will clean the entire environment, unloading all the modules. Now load a different version:

ml python/3.10.8-gcccore-12.2.0

Remember that a venv created with one python version would not work with another one.

9

Modes of work with Slurm

srun (interactive sessions)

srun … --pty /bin/bash -l only on login node: activates an interactive session, allowing you to do use
a compute node from the terminal; in place of the … add any and all sbatch
options you would normally use in a script; an example is given below:

srun -p plgrid-testing -N 1 --ntasks-per-node=1 -n 1 -A <grantname>-cpu --pty /bin/bash -l

pro-viz (graphical user interface)

ml pro-viz loads the pro-viz module

pro-viz start … sends an undying session to the queue that will be able to run a graphical
user interface; in place of the … add all the options you would add to
sbatch and replace the ones featured below with their pro-viz start
counterparts

pro-viz password JOBID while the job is running: gives instruction how to use the GUI, paste the link
into the browser and login with plgrid account

These are pro-viz start options that differ from sbatch

-P replaced --ntasks-per-node and --cpus-per-task with one option that
specifies cores per node

-r replaced --reservation

-g N replaced --gres=gpu:N

-M replaced --mem

localfs, memfs (temporary filesystems)
These are sbatch options

-C localfs adds temporary localfs space to your job, this filesystem decreases the
amount of metadata necessary to manage the files and works better for
software producing a lot of smaller files; the size is 1TB

-C memfs allows you to use RAM as a temporary filesystem in your calculation, the
size is the same as the total memory on the job and can be specified with
--mem option; works best for calculations small enough to fit in the
memory; not suitable for every calculation

These are environmental variables available only on jobs sent with options above, these temporary
locations are removed at the end of the job, so any files generated on them need to be copied to a

permanent storage like SCRATCH from within the batch script

$LOCALFS stores a path to the space granted by localfs

$MEMFS stores a path to the space generated in-memory (RAM) by memfs

10

Helpdesk guide

BEFORE making a ticket
1. Make sure to not overwrite the outputs, in which the error messages appeared. If you must

overwrite the directory, copy them to a safe dir and tell us where it is. Best way to ensure your ticket
is going to be resolved as quickly as possible is to not move the script, inputs and outputs at all.

2. If you modified the ~/.bashrc file, undo the changes and try again. It is very easy to break things by
adding commands to this file, see the ~/.bashrc section of this handout (p. 2).

3. Check for spelling mistakes in your batch script and input.
4. Read the error message.

a. DUE TO TIME LIMIT → give the job more time, or more cores, or both and restart;
b. invalid keyword→ check your input for typos and restart;
c. command not found, module not found or permission denied → check your script for typos

and restart;
d. OOM (out-of-memory) → give your job more memory and restart;
e. segmentation violation or other → usually best to make a ticket in Helpdesk.

5. Check the efficiency of the job with hpc-jobs-history.
6. If the job finishes correctly, but the problem is the efficiency, try doing a scalability tests for the

software:
a. downsize your problem to a manageable test, e.g. use smaller input, do not run long

computation when doing scalability tests;
b. try running a smaller input on 1, 2, 4, 8, 16, 48 cores and compare efficiency of each test;
c. if the problem disappears during the tests, but returns in regular calculation, definitely make

a ticket in Helpdesk, the issue might be with the software;
d. when you are going to make the ticket about this issue, include the jobIDs of all your

scalability tests.
7. If a severe issue has appeared once and then it did not happen again without changing anything,

write a ticket to Helpdesk and call it an incident. Specify that you don't need help, just wanted to
inform us - cases like this will greatly help us improve the overall health of our clusters.

a. What's severe? The calculation failing without an error message, the
8. If you want to install software, we can do it for you - we will add it globally to our repertoire as a

convenient module. Make a ticket to Helpdesk and ask,
a. but if you want us to install a python package, please check if it is contained in the module

Scipy-Bundle, like e.g. numpy, scipy;
b. if it's machine learning related and on Helios, check out the ML-bundle module first;
c. if not, try installing it to a virtual environment following the instructions given in this handout

(p. 6-7).
9. If you want to install custom software on your account locally, tell us - make a ticket to Helpdesk and

ask for guidance on how to do it on your own. We will provide the best tricks to make it convenient
for you and we will help with arising problems.

11

WHEN making a ticket
1. In almost all cases, the entire problem can be explained by providing the jobID of the job that failed.

ALWAYS provide the jobID to Helpdesk, it will allow us to see everything that happened, including
what script you used to run it, where are the inputs and outputs stored and more. You rarely need to
paste the script into HD for us, we will just check it on our end.

2. There might not be a jobID, when the problem touches programs running on interactive jobs, on
pro-viz, or on the login node. In this case, describe what happened in detail and show the
commands you used when the error appeared. First thing we are going to do is try to recreate the
problem, so be meticulous in your description.

3. Write a clear title, we get a lot of "Problem with Ares" type tickets that are then revealed to be a
specific-software-related issue. When a phrase like e.g. "segmentation violation in gaussian" is in
the title, the appropriate expert can take the ticket immediately.

4. When sending a problem with python, use python3 -m pip freeze to generate the list of your
packages with their versions. Save it as the requirements.txt file and attach to your ticket.

Best practices
1. If you have two issues, make two tickets.

a. Unless they are analogous, e.g installing software is; if you need to install three unrelated
pieces of software one ticket will suffice.

2. Respect that we work with a variety of work schedules. An expert in your issue might not be
immediately available, please be patient.

3. When you have two tickets, try keeping the issues separate, especially when you talk to two
different experts.

12

