

Modeling Texture Evolution in Metals with CA Model

dr inż. Bartosz Sułkowski

Katedra Nauki o Materiałach i Inżynierii Metali Nieżelaznych Wydział Metali Nieżelaznych Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

Akademickie Centrum Komputerowe Cyfronet AGH

Motivation

- Increasing demand for new emerging alloys e.g: automotive and transport industry,
- New applications: hydrogen storage, biodegradable materials
- Anisotropy of properties
- The plastic deformation of some important alloys is rather problematic due to the strong anisotropy of hexagonal structure – formation of strong basal texture during e.g. rolling
- The ductility of the alloys can be enhanced by means of weakening texture in many different ways:
 - changing of the rolling direction
 - introducing shear component of deformation e.g. in differential speed rolling processing (DSR)
 - dynamic recrystallization (DRX)
 - DRX + massive twinning during rolling at very high strain rates (≥ 101 s-1)

Anistoropy in metals

Severe plastic deformation methods

High Pressure Torsion (HPT) Cold Rolling and Folding (CR&F) Hydrostatic Extrusion (HE)

Mechanical anisotropy of HCP metals

Substructure in hcp metals

d≈20-30 μ m → in 1 cm³ is about 10⁷ grains

Meijuan Hao et al.,

Texture evolution induced by twinning and dynamic recrystallization in dilute Mg-1Sn-1Zn-1Al alloy during hot compression,

10.1016/j.jma.2019.10.002, Journal of Magnesium and Alloys, 2020

Dislocation structure in the grains

Models for texture evolution in deformed metals

- P. Van Houtte, A Comprehensive Mathematical Formulation of an Extended Taylor-Bishop-Hill Model Featuring Relaxed Constraints, the Renouard-Wintenberger Theory and a Strain Rate Sensitivity Model, Textures and Microstructures, 8-9 (1988), 313-350
- P. Van Houtte, S. Li, M. Seefeldt, L. Delannay, Deformation texture prediction: from the Taylor model to the advanced Lamel model, International Journal of Plasticity 21 (2005), 589–624
- S. Graff, Micromechanical Modeling of the Deformation of HCP Metals, GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht, (2008)
- H.R. Piehler, Crystal-Plasticity Fundamentals, ASM Handbook Volume 22A: Fundamentals of Modeling for Metals Processing (2009)
- H. Wang, P.D. Wu, J. Wang, C.N. Tomé, A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and detwinning mechanisms, International Journal of Plasticity 49 (2013), 36–52

Model for texture evolution in hot deformed metals

1	7	7	5	5	6
1	1	5	5	5	5
1	1	5	5	5	5
1	2	2	2	5	4
3	2	2	2	4	4
3	3	2	2	4	4

- D. Raabe, Introductiori of a scalable three-dimensional cellular automaton, with a probabilistic switching rule for the discrete mesoscale simulation of recrystalization phenomena, Philosophical Magazine A, 79 (1999), 2339-2358
- D. Raabe, L. Hantcherli, 2D cellular automaton simulation of the recrystallization texture of an IF sheet steel under consideration of Zener pinning, Computational Materials Science 34 (2005), 299–313
- L. Wang, G. Fanga, L. Qian, Modeling of dynamic recrystallization of magnesium alloy using cellular automata considering initial topology of grains, Materials Science and Engineering A 711 (2018), 268–283

$$\dot{x} = n \text{mp} = n \text{m}_0 \exp\left(\frac{-Q_{GB}}{k_B T}\right) p$$

 \dot{x} – prędkość przemieszczania się granicy ziarna,

n – normalna do płaszczyzny granicy ziarna,

m, m₀ – parametry opisujące ruchliwość granicy ziarna,

 $Q_{\rm GB}$ – energia aktywacji przemieszczania się granicy ziarna,

 $\vec{k}_{\scriptscriptstyle R}$ – stała Boltzmanna,

 \tilde{T} – temperatura bezwzględna,

p – parametr opisujący sumaryczne naprężenie pędne działające na granicę ziarna.

$$w^{ij} = \zeta \left(\frac{\mathbf{m}_0^{ij} p^{ij}}{\mathbf{m}_0^{\max} p^{\max}} \right) \exp \left(\frac{Q^{ij}}{k_B T} \right)$$

 w^{ij} – prawdopodobieństwo zmiany stanu komórki c_i na stan komórki c_j

 ζ – maksymalna dozwolona wariancja,

 $\mathfrak{m}_0^{\ ij}$ – mobilność granicy ziarna pomiędzy komórkami c_i i c_j ,

 p^{ij} – naprężenia działające na granicę ziarna między komórkami c_i i c_j

 m_0^{max} – maksymalna mobilność granicy ziarna,

 p^{\max} – maksymalne naprężenie działające na granicę ziarna,

 Q^{ij} – energia aktywacji przemieszczania się granicy ziarna pomiędzy komórkami c, i c.

Description of the new vpsc+CA

B. Sulkowski, R. Chulist, Modeling of dynamic recrystallization texture in hot extruded Mg, Materials Characterization 201 (2023) 112968

odrzuć jeśli $r > w^{nm}$

Experimetns and simulations

- PN-EN 1753:2001 Αl Zn Mn Mg (% wag.) (% wag.) (% wag.) (% wag.) EN-MCMg99,8 99.8 EN-MCMgAl3Zn1 2.5-3.5 0.6 - 1.4reszta EN-MCMgAl1Mn0 4,4-5,4 0.22 0,26-0,6 reszta EN-MCMgAl6Zn1 5,8-7,2 0.4 - 1.5reszta
 - Number of grains 10³ 10⁵
 - Number of subgrains for each grain 36 – 64
 - MPI libraries
 - Ares Supecomputer
 - 1 node x 1 cpu 4 nodes x 48 cpus

Results for extrusion

Results for rolling

Calculation time

Summary

- Main texture component during rolling is basala
- Main texture componetn during extrusion is {10-10} fibre and {11-20} fibre
- During hot deformation texture is weakened
- VSCP model cant predict hot deformed texture
- VSCP+CA predictions of texture are comparable with experimetrs
- Due to the complexity of vpsc+CA model parallel calculations on supercomputer have to be performed

Thank you for your attention