Mildly relativistic shocks at high magnetization using PIC simulations

¹GABRIEL TORRALBA PAZ, ²MASAHIRO HOSHINO, ²TAKANOBU AMANO, ³SHUICHI MATSUKIYO AND ¹JACEK NIEMIEC

KONFERENCJA UŻYTKOWNIKÓW KOMPUTERÓW DUŻEJ MOCY 2025 APRIL 3, 2025

Ultra-relativistic shocks: an overview 2

Three main sites:

Galactic sources

Pulsors

AGN

GRB

Extragalactic sources

Ultra-relativistic shocks: an overview ³

- ► $\gamma_{sh} \gtrsim 10$
- Intrinsic <u>superluminal</u> conditions
- Inherent precursor waves
 - ► Electric wakefield → Electron acceleration!

 $^{10^{6}}$ $\frac{10^{6}}{10^{2}}$ 10^{4} 10^{2}

Hoshino, 2008

WFA in mildly relativistic shocks

Mildly relativistic shocks show precursor waves

▶ But the WFA efficiency is very low...

4

PIC simulation of a strictly perpendicular mildly relativistic shock. Taken from Ligorini, A., et al. 2021.

Mildly relativistic shock sites

Where can we find these?

AGN jets / AGN hot spots

- $\blacktriangleright \gamma_{bulk} \sim a few$
- Strong X-ray emission
- Magnetic field structure?

X-ray binaries / Microquasars
 Jets (mildly rel. locations)
 Quite strong B field
 Classic example: SS 433

Mildly relativistic shocks offer more!

Mildly relativistic shocks have a wider range of <u>subluminal</u> conditions!

 $\theta_{Bn'}$

 v_{sh}

- Subluminal? You may ask...
- Downstream | Upstream

Subluminal configurations allow for particle reflection! $v_{sh} = c \cos \theta_{cr}$

Critical angle vs. Shock Lorentz factor with two examples.

Particle-In-Cell (PIC) simulations

Plasma shocks can be studied using PIC simulations.
They require a lot of computational power.

Typical PIC simulation plot: electron density ρ_e .

7

Resources (for one simulation):

- Cluster: Ares at ACK Cyfronet AGH (CPU partition)
- Max. number of processes used: 1440 (30 nodes)
- ▶ Time: 129 h, 121795 CPUh
- ► Storage: 6 TB

Particle-In-Cell method

Particles are pushed (Lorentz force): $\frac{d^2x}{dt^2} = \frac{q}{m} (\mathbf{E} + \mathbf{v} \times \mathbf{B})$

E and B interpolation at particle i: E_i, B_i

Particles deposit the current in a discrete grid:

$$\boldsymbol{j} = \sum_{i} q_i \boldsymbol{v}_i$$

Current density \rightarrow E and B field:

 $\nabla \times \boldsymbol{E} = -\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} \quad \nabla \times \boldsymbol{B} = \frac{1}{c} \left(4\pi \boldsymbol{j} + \frac{\partial \boldsymbol{E}}{\partial t} \right)$

Subluminal mildly relativistic shocks

Mildly relativistic¹ strongly magnetised² oblique³ shocks:

1. Shock speed: $v_{sh} \approx 0.953c$ or Lorentz factor $\gamma_{sh} \approx 3.3$ 2. Magnetisation $\sigma = 1$ $\sigma = \frac{\Omega_c^2}{\omega_p^2} = \frac{B^2}{\mu_0 \gamma nmc^2}$

3. Obliquity $\theta_{Bn} = 30^{\circ}$

This "middle ground" of mildly rel. shocks looks promising!

Phase space and acceleration

Strong electron acceleration.

Note the units!

- Clearly, there must be a relation with ϕ .
- ► Acceleration parallel to B.

 \blacktriangleright p_x and p_z.

Electrostatic potential and normalised electron momentum in z-direction

11

Electron acceleration

Following Bessho and Ohsawa 1999, 2002:

Strong magnetosonic wave + Oblique magnetic field

_

Electron trapping and acceleration!

- 1. Electrons get trapped in the large electrostatic potential.
- 2. Acceleration over many cycles.
- 3. Net energy increases!

 $\gamma_{max} \approx 10,000$

Summary

- Mildly relativistic shocks enable particle acceleration mechanisms different than that at ultra-rel. shocks at subluminal configurations.
- Oblique mildly rel. shocks accelerate electrons and ions to very high energies.
- Other subluminal obliquities are currently under research.