

GaNDLF-Synth: a Framework for Generative AI in Biomedical Imaging

Sarthak Pati^{1,2}, <u>Szymon Mazurek</u>^{3,4}, Akis Lindaros¹ Spyridon Bakas^{1,2}

1 Indiana University, Indianapolis, 46202 USA
2 Medical AI Working Group, MLCommons, San Francisco, CA, USA
3 AGH University of Krakow, Krakow, 30-059 Poland
4 ACC Cyfronet AGH, Krakow, 30-950 Poland

04.04.2025

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Krakow

Problem overview

- Data Scarcity: medical imaging data is limited compared to other data types
- **Privacy Concerns:** sharing patient medical images raises significant privacy issues
- Data Imbalance: rare diseases have very few positive cases, creating data imbalances
- Inter-Site Variability: medical images vary across different acquisition sites
- Lack of General-Purpose Tools: existing tools are often specialized and not easily adaptable
- Computational Expertise Required: training GenAI models demands significant technical knowledge
- Translation Difficulties: generating one modality of medical image from another is complex

<u> </u>		1	l	•	1 • 1	•
$(-\Omega \Omega /)$	2nd	nroh	Δmc	In mac	れてつし	IMAGING
UCHAI	anu	\mathbf{U}	にここ	$\Pi\Pi$	ııcaı	imaging
	O O .					

Aspect	Description				
	GenAI can address gross data imbalance, especially for rare diseases, by				
Data	generating more positive cases. It can also handle class imbalance across				
Imbalance	sites in multi-institutional studies				
	Sheller et al. (2020); Pati et al. (2022).				
Unsupervised Learning	GenAI models can learn data distribution in an unsupervised manner and				
	be transferred as feature extractors for other tasks, such as				
	classification Lin et al. (2017); Shrivastava et al. (2017).				
Data Quality	GenAI models can enhance data quality by performing tasks like denoising,				
Enhancement	reconstruction, or super-resolution Frangi et al. (2018).				
Modality Generation	With proper training, GenAI models can generate different imaging modalities				
	from base examples, such as generating PET images from				
	MR Dayarathna et al. (2023), thus, serving as an approximation tool.				
Privacy	GenAI can enable the use of synthesized data instead of real patient data,				
	which can increase privacy by reducing the risk of models leaking training				
	information Song et al. (2019); Pati et al. (2024).				

Proposed solution

- GaNDLF-Synth: low-code CLI application
- Simple setup: based on simple YAML file configuration files
- End-to-end solution: data preprocessing, augmentation, data splits, training and inference
- Scalability Pytorch Lightning support: multi-GPU, multinode, DeepSpeed support for running large models
- Support for multiple neural network architectures: autoencoders, GANs, diffusion models
- Extensibility: modular design, simple to implement custom solutions
- Validation and robustness: CI/CD, testing

Configuration file example

```
data_augmentation: {}
                                                 model_config:
                          dataloader config:
                                                   architecture:
data_postprocessing: {}
                            inference:
                                                     num eval timesteps: 1
                              drop_last: false
data_preprocessing:
                                                     num_train_timesteps: 1
                              num workers: 0
  test:
                                                   converter_type: soft
                              pin_memory: false
    resize:
                                                    labeling paradigm: unlabeled
                              shuffle: false
    - 64
                                                   losses:
                            test:
    - 64
                                                     name: mse
                              drop_last: false
  train:
                                                   model_name: ddpm
                              num workers: 0
                                                   n_channels: 2
    resize:
                              pin_memory: false
                                                   n dimensions: 2
    - 64
                              shuffle: false
                                                   norm_type: batch
    - 64
                            train:
                                                   optimizers:
                              drop last: false
  val:
                                                       lr: 0.0001
                              num workers: 0
    resize:
                                                       name: adam
                              pin_memory: false
    - 64
                                                   tensor_shape:
                              shuffle: true
    - 64
                                                   - 64
                            validation:
  inference:
                                                   - 64
                              drop_last: false
                                                   schedulers:
    resize:
                              num_workers: 0
                                                     type: triangle
    - 64
                              pin_memory: false
                                                     step_size: 2
                              shuffle: false
    - 64
```


GaNDLF-Synth core principles

Application architecture

Supported architectures - autoencoders

Supported architectures - GANs

CYFRONET

Supported architectures – diffusion models

Conclusions and future work

- Integration of new model architectures
- Federated learning support
- Maintenance and refactoring
- github.com/mlcommons/GaNDLF-Synth

Thank you!