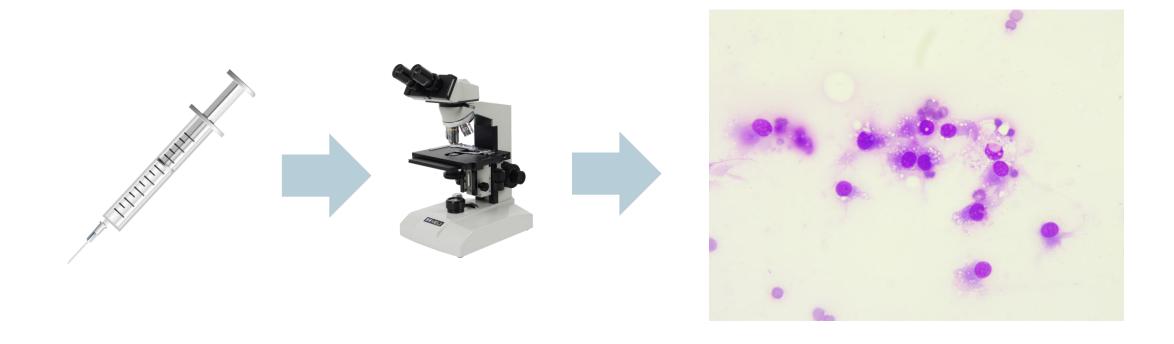
Deep Learning for Cancer Cell Detection in Veterinary Cytology

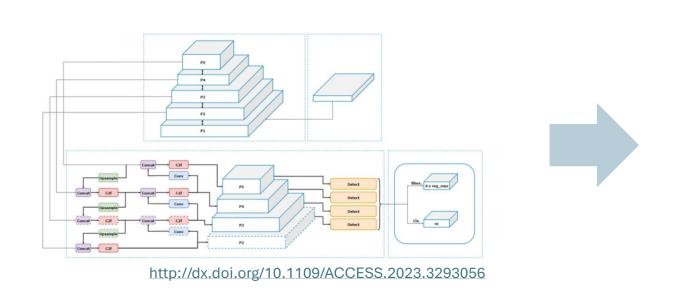
Jan Krupiński, Ernest Jamro, Maciej Wielgosz, Paweł Russek, Agnieszka Dąbrowska-Boruch, Kazimierz Wiatr

Cytological Examination of Skin Lesions

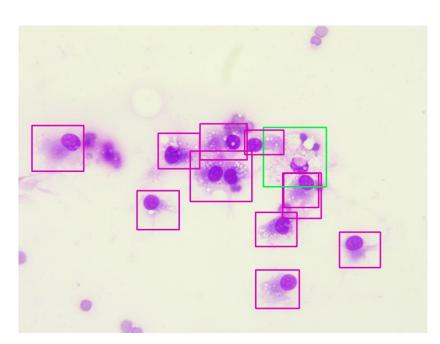


- Quick and minimally invasive skin cancer diagnostics
- Requires expert knowledge

Cancer Cell Detection with Deep Learning



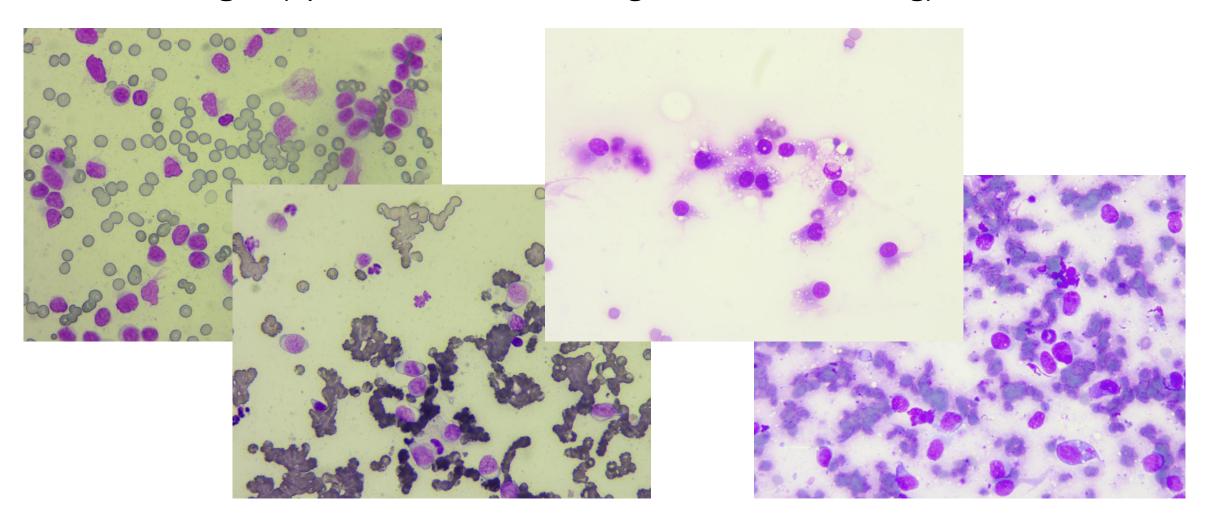
Deep Learning model



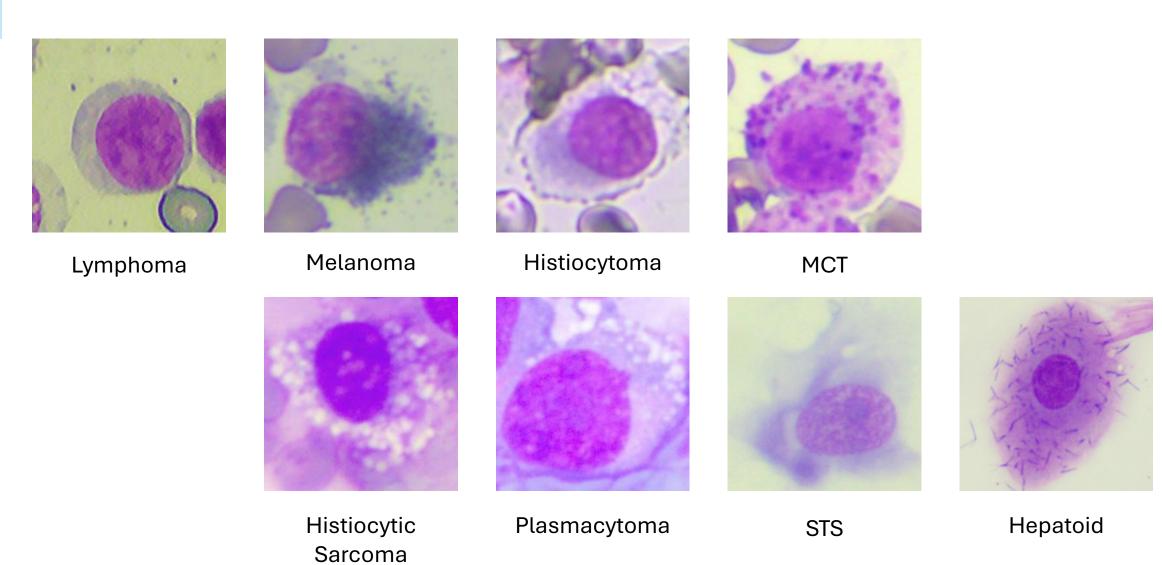
Example detection: Histiocytic Sarcoma cells

Dataset of Cytological Images

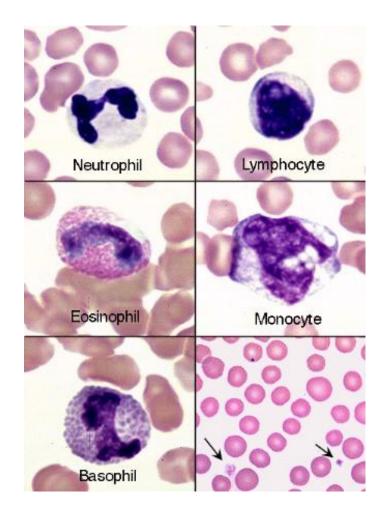
2,146 images (split 60-20-20% training, validation, testing)



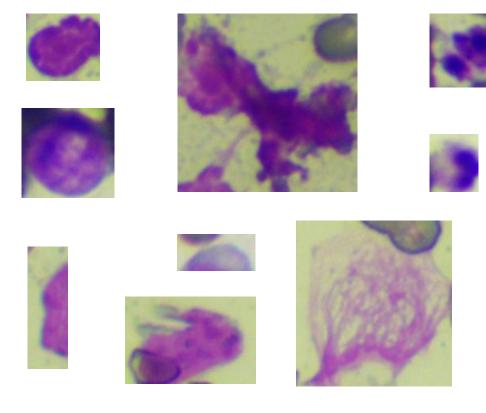
Cancer Cell Types



Other Cell Types



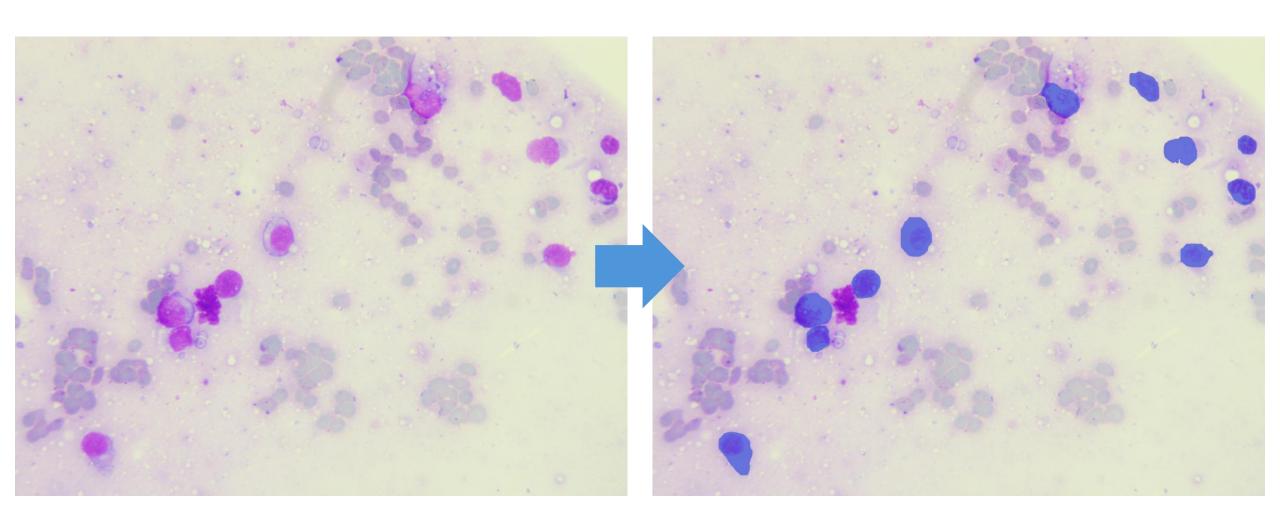
white blood cells



non-diagnostic category (40% of all cells)

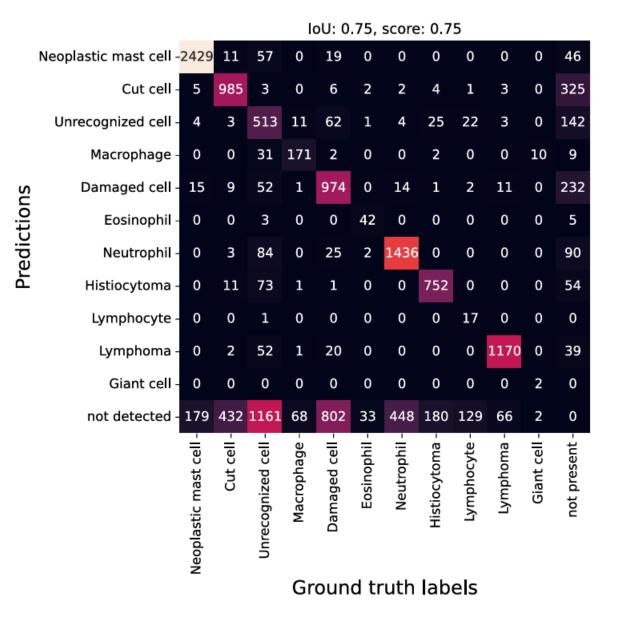
Labelling Cells for Segmentation

65,684 cells in 13 classes

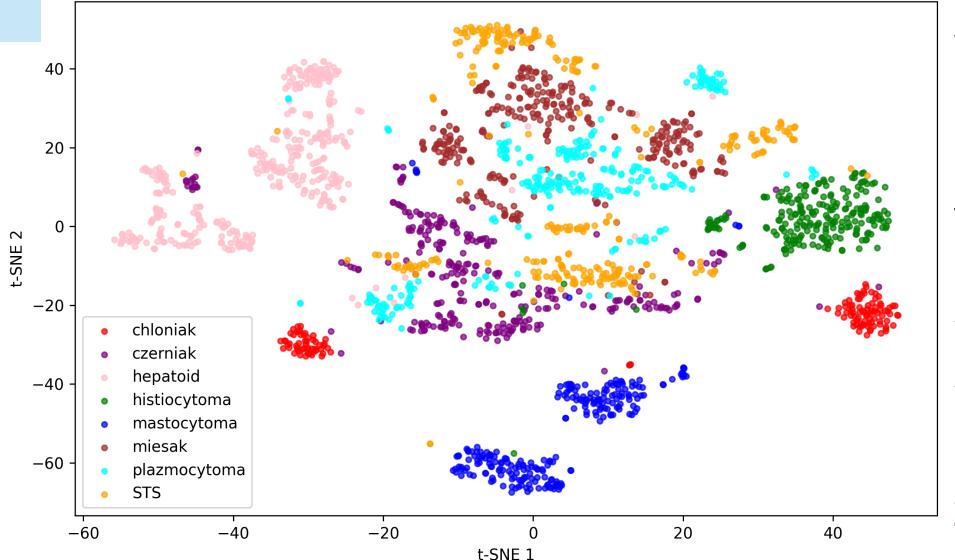


Segmentation Results

- 68% of errors are undetected non-diagnostic cells
- Some cells were missed by the specialist
- The rest of the errors can easily be eliminated (only one type of cancer can be present at a time)



T-SNE Data Visualization



ViT-L Model
https://arxiv.org/abs/2010.11929
Output

Weights: (DINOv2

https://arxiv.org/abs/2304.07193

/

DinoBloom)

https://dl.acm.org/doi/10.1007/978-3-031-72390-2_49

Third-Party Data



Testing on images submitted by a potential user

Cell Detection on Third-Party Data

Cancer Cell Recall:

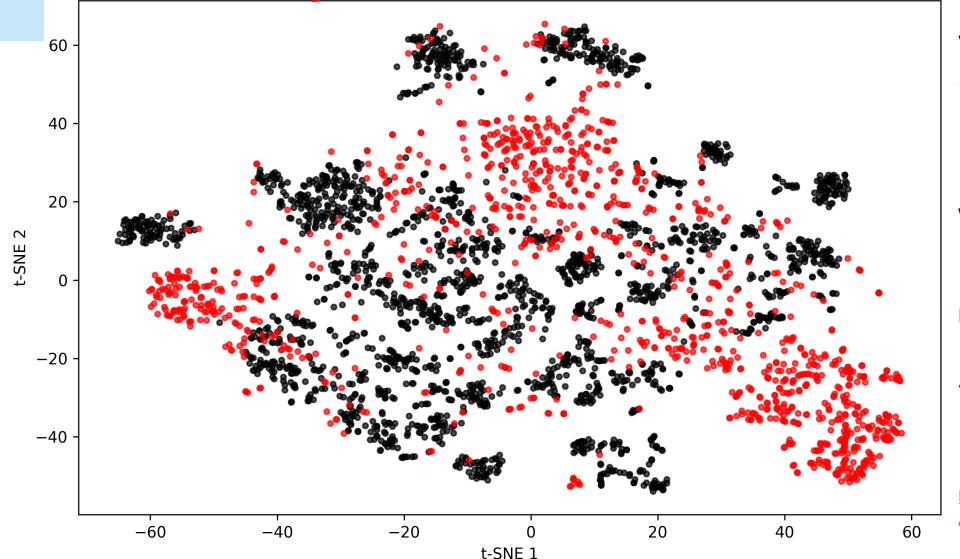
	Training data	New images	Phone images	Third-Party data
lymphoma	93%	53%	26%	1%
MCT	92%	96%	38%	35%
melanoma	83%	58%	56%	32%
average	90%	70%	40%	23%

Significant drop in model performance.

Third-Party Data Visualization (t-SNE) chloniak 30 -ViT-L Model https://arxiv.org/abs/2010.11929 czerniak histiocytoma mastocytoma Output 20 miesak plazmocytoma STS 10 -Weights: t-SNE 2 DINOv2 https://arxiv.org/abs/2304.07193 -10-20 -DinoBloom) https://dl.acm.org/doi/10.1007 -30/978-3-031-72390-2 49 -2020 60 -4040

t-SNE 1

Third-Party Data vs Internal Data



ViT-L Model
https://arxiv.org/abs/2010.11929
Output

Weights: (DINOv2

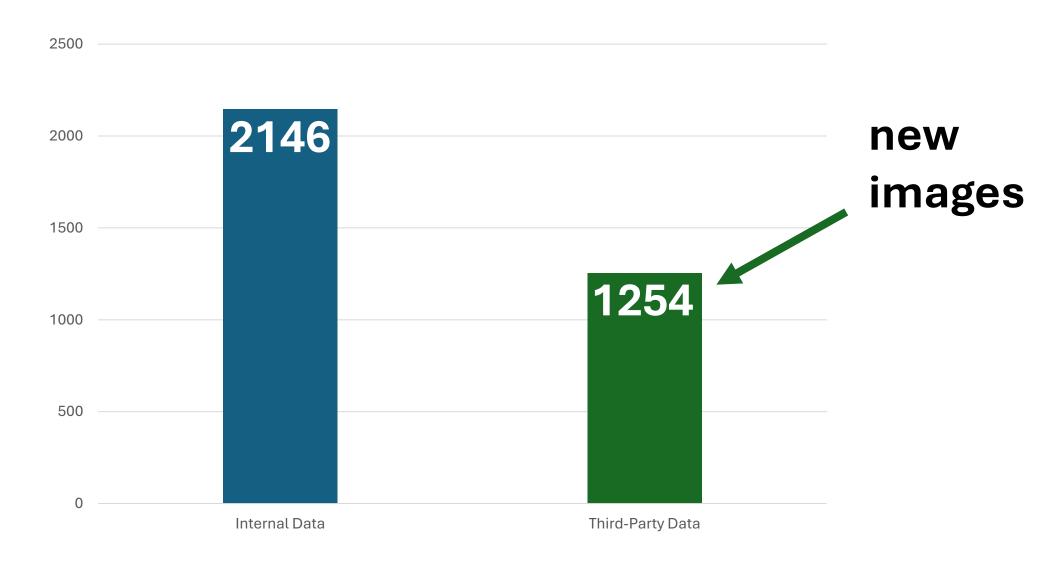
https://arxiv.org/abs/2304.07193

/

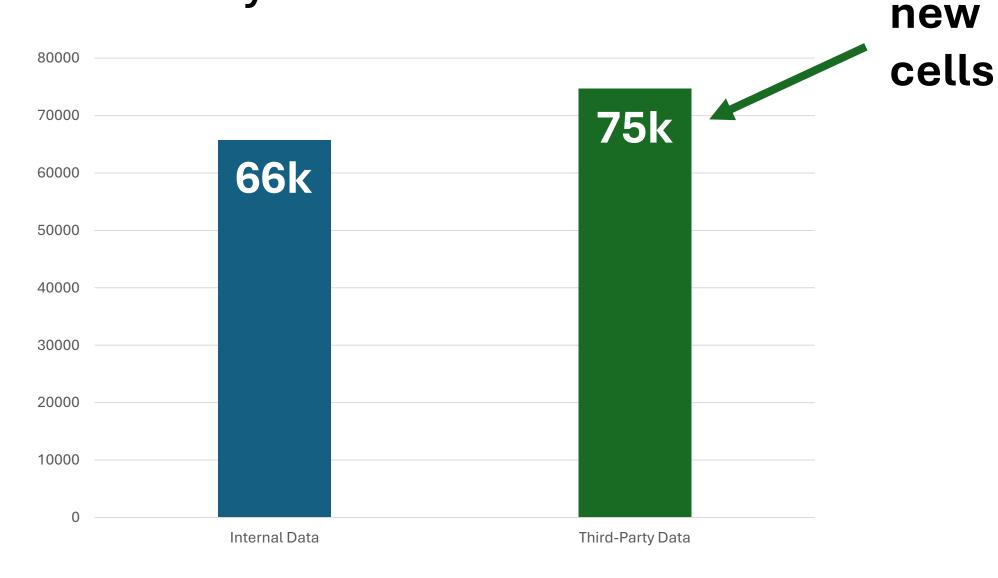
DinoBloom)
https://dl.acm.org/doi/10.1007

/978-3-031-72390-2_49

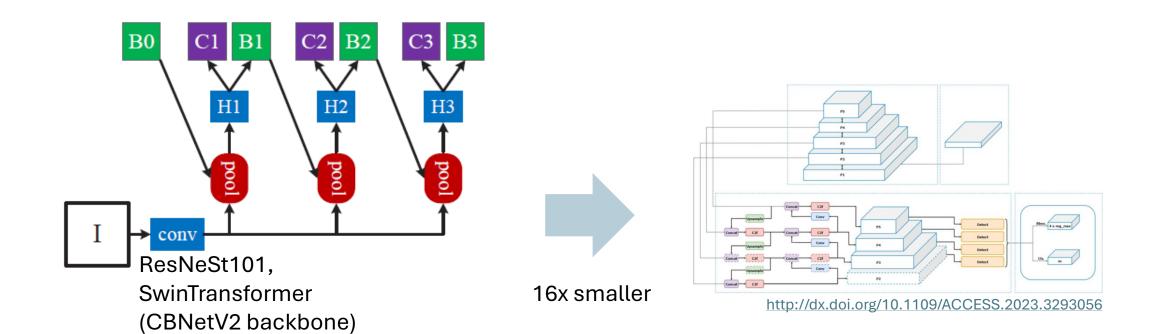
New Third-Party Images



New Third-Party Cells



Change to Detection with Smaller Models



Cascade Mask R-CNN

416M parameters

~1.7GB

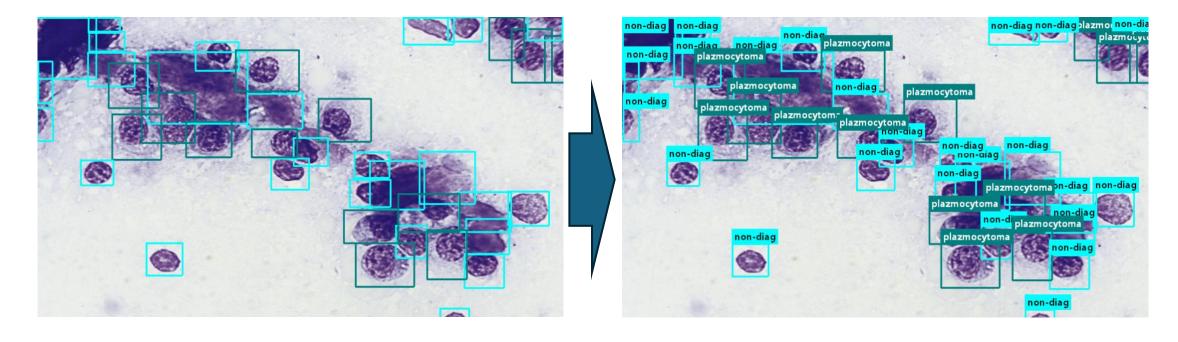
Z. Cai and N. Vasconcelos, "Cascade R-CNN: Delving Into High Quality Object Detection," 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 6154-6162, doi: 10.1109/CVPR.2018.00644.

YOLOv8

26M parameters 104MB

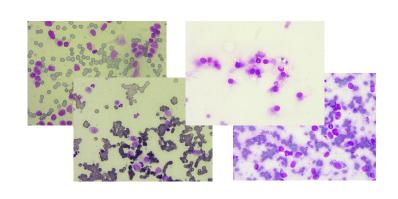
Jocher, G., Qiu, J., & Chaurasia, A. (2023). Ultralytics YOLO (Version 8.0.0) [Computer software]. https://github.com/ultralytics/ultralytics

Labelling Cells for Detection



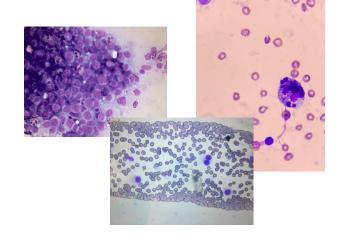
- Cells were detected by a previously trained model
- Cancer cell type known from the source

Improvement (mAP)

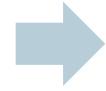


0.78

0.88



0.26



0.54

Internal Data

Third-Party Data

Conclusions & Future Research

- Diverse and high-quality data is crucial
- Biases in the internal data need to be further explored
- Bigger innovative models can wait until the dataset issues are resolved

Thank you for your attention!

Acknowledgements. The numerical experiment was possible through computing allocation on the Athena system at ACC Cyfronet AGH under the grants plglaoisi24, plgdyplomanci6.