Theoretical Study on Photophysical Properties of a Coumarin Derivative

Presenter: Dominika Tabor

Supervisor: dr hab. Monika Srebro-Hooper, prof. UJ

Quantum Chemistry Group - Department of Theoretical Chemistry Faculty of Chemistry - Jagiellonian University in Kraków Coumarins – characteristics

Properties and applications

Dual fluorescence and room-temperature phosphorescence phenomena

Examined system

Goals

Obtained results

Conclusions and future plans

Properties and applications

Dual fluorescence

Room-temperature phosphorescence

Examined system

Goals

Results

• class of heterocyclic, phenolic compounds with benzene and an alpha-pyrone ring

Natural coumarins can be divided into six groups:

- simple coumarins
- furanocoumarins (linear type and angular type)
- pyranocoumarins (linear type and angular type)
- dihydrofurano coumarins
- phenyl coumarins
- bicoumarins

 xanthyletin pyranocoumarin (linear)

psolaren furanocoumarin (linear)

3,3'-methylenebis(2H-chromen-2-one) bicoumarin

- Properties and applications
- Dual fluorescence

Room-temperature phosphorescence

Examined system

Goals

Results

- photosensitizers
- enzyme inhibitors
- antiinflammatory agents
- anticoagulants

OH

• antioxydants

- photostability
- high quantum yield
- possibility of tuning properties through structural modifications

Properties and applications

Dual fluorescence

Roomtemperature phosphorescence

Examined system

Goals

Results

Dual fluorescence

 co-existence of multiple emissive states in different electronic and/or molecular structures

HO

Ν

in CH₂Cl₂

in H_oO

600

in EtOAc

in THF

in MeOH

in MeCN

O

Lijuan Xie et al.

- breaching the Kasha's rule ٠
- aggregation effects ٠

in PhCH

250

200

150

100

50

ſ

Fluorescence / a.u.

- promotion of intersystem crossing ٠ (ISC)
- reduction of non-radiative relaxation • processes

30717-30726

400

500

Wavelength / nm

Outlook

Properties and applications

Dual fluorescence

7

HC

Room-temperature phosphorescence

Examined system

Goals

Results

Prof. A. Matwijczuk, University of Life Sciences in Lublin

Properties and applications

Dual fluorescence

Room-temperature phosphorescence

Examined system

Goals

Results

Development of a reliable theoretical model to explain observed emission properties of the system:

- 1. Conformational analysis
- 2. Modelling of emission properties (through optimization of S_1 and T_1 excited states)
- 3. Investigation of ISC (through calculation of spin-orbit coupling (SOC) interactions between S₁ and low-energy triplet excited states)

Properties and applications

Dual fluorescence

Room-temperature phosphorescence

Examined system

Goals

Results

Program: conformer-rotamer sampling tool CREST

Philip Pracht et al. *J. Chem. Phys.,* **2024**, 160, 114110

7

Н

3

Program: Gaussian 16 Method: DFT Functional: B3LYP Basis set: 6-311++G(d,p)Environment: PCM (methanol, $\epsilon = 32.6$)

DFT B3LYP//6-311++G(d,p)

DFT B3LYP//6-311++G(d,p)

Properties and applications

Dual fluorescence

Room-temperature phosphorescence

Examined system

Goals

Results

Choice of functionals for TD-DFT calculations

Program: DELFI by D. Avagliano

S₁ optimization

Davide Avagliano et al. *Chem. Sci.*, **2024**, 15, 4489-4503

Program: Gaussian 16/ORCA Method: TD-DFT, CCSD Functional: B3LYP, CAM-B3LYP, ω B97X-D, LC- ω PBEh, ω B97-XV, rCAM-B3LYP, TPSSh, M06, M062X, M11 Basis set: 6-311++G(d,p) Environment: PCM (methanol, $\epsilon = 32.6$)

Properties and applications

Dual fluorescence

Room-temperature phosphorescence

Examined system

Goals

Results

Outlook

 $\Delta E / kcal·mol^{-1}$ dist. in Å

	E [eV] (λ [nm])	f	H ← L: %
exp.	3.061 (405)	-	-
exp.	2.786 (445)	_	-

Sh	I	3.234 (383)	0.700	97.3
	II	3.226 (384)	0.715	97.7
ΤD	III	3.219 (385)	0.686	95.6
	IV	3.227 (384)	0.704	97.7

(orbital energy, eV)

	HOMO TPSSh	LUMO		Ε [eV] (λ [nm])	f	H ← L: %
Coumarins	I (-6.341)	(-3.103)	exp.	3.061 (405)	_	-
Properties and applications			exp.	2.786 (445)	-	_
		1 Î	I	3.257 (381)	0.786	98.1
	II (-6.317)	(-3.087)	₽ II	3.241 (383)	0.785	98.2
Dual fluorescence	؞ <u>ۄ</u> ڡؙڰ؋ڰۅڡؚۛ؞؋؞		III B3L	3.253 (381)	0.791	98.1
			IV	3.243 (382)	0.779	98.2
Room-temperature	ι C-ωPBFh	e l	I	3.234 (383)	0.700	97.3
phosphorescence			ч М	3.226 (384)	0.715	97.7
	(-8.401)	(-1.162)	S III	3.219 (385)	0.686	95.6
Examined system			IV	3.227 (384)	0.704	97.7
	Ö	₽ [₽] ₽₽₽₽₽₽	۲ ۲	3.389 (366)	0.841	96.7
Carla	II (-8.381)	(-1.144)		3.379 (367)	0.833	96.8
GUdis			З Ш	3.386 (366)	0.845	96.8
Results			IV	3.379 (367)	0.829	96.8
	र र र र र					

(orbital energy, eV)

Properties and applications

Room-temperature phosphorescence

Examined system

Goals

Outlook

TD-DFT TPSSh (CCSD @ TPSSh)//6-311++G(d,p)

Coumarins				Ε [eV] (λ [nm])	f	H ← L: %
	TPSSh HOMO		exp.	3.061 (405)	_	
Properties and applications	(-6.341)	(-3.103)	exp.	2.786 (445)	-	_
			B3LYP	3.257 (381)	0.786	98.1
Dual fluorescence	ę ę ę		TPSSh	3.234 (383)	0.700	97.3
	C		LC-ωPBEh	3.389 (366)	0.841	96.7
Room-temperature phosphorescence	CCSD @ TPSSh HOMO	LUMO	CCSD @ B3LYP	3.125 (397)	0.702	95.4
	(-8.674)	(0.764)	CCSD @ TPSSh	3.110 (399)	0.663	95.4
Examined system			CCSD @ LC-ωPBEh	3.114 (398)	0.726	95.6
Goals	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ΔE = 0).72 (0.69)	ΔE / kcal·mol ⁻¹	dist. in Å
Results				2.3 2.3		
Outlook	(orbital energy, eV)		I			

Coumarins				Ε [eV] (λ [nm])	f	H ← L: %
	TPSSh HOMO	LUMO	exp.	3.061 (405)	_	_
Properties and applications	(-6.317)	(-3.087)	exp.	2.786 (445)	-	_
	· de de de		B3LYP	3.241 (383)	0.785	98.2
			TPSSh	3.226 (384)	0.715	97.7
Dual fluorescence			LC-ωPBEh	3.379 (367)	0.833	96.8
			CCSD @ B3LYP	3.081 (403)	0.723	94.5
Room-temperature phosphorescence	CCSD @ TPSSh HOMO (-8.656)	LUMO (0.768)	CCSD @ TPSSh	3.087 (402)	0.749	95.4
Examined system			CCSD @ LC-ωPBEh	3.090 (401)	0.802	95.5
Goals			ΔE = 0.32	(0.00)	ΔE / kcal·mol ⁻¹	dist. in Å
Results				2.4		
Outlook	(orbital energy, eV)		п 7 7	2.8	•	

Properties and applications

Dual fluorescence

Room-temperature phosphorescence

Examined system

Goals

Results

SOC calculations

Program: ADF Method: TD-DFT Functional: B3LYP Basis set: TZ2P Environment: COSMO (methanol, $\varepsilon = 32.6$)

Properties and applications

Dual fluorescence

Room-temperature phosphorescence

Examined system

Goals

Results

2.5

2.25

 $\frac{\xi \ / \ cm^{-1}}{\Delta E \ / \ eV}$

TD-DFT B3LYP//TZ2P @ B3LYP geometries

TD-DFT B3LYP//TZ2P @ B3LYP geometries

Ι

Properties and applications

Dual fluorescence

Room-temperature phosphorescence

Examined system

Goals

Results

Properties and applications

Dual fluorescence

Room-temperature phosphorescence

Examined system

Goals

Results

 $^{1}(\pi, \pi^{*}) \rightarrow ^{3}(n, \pi^{*})$

 $^{1}(\Pi, \Pi^{*}) \rightarrow ^{3}(\Pi, \Pi^{*})$

Properties and applications

Dual fluorescence

Room-temperature phosphorescence

Examined system

Goals

Results

4.5

4.0

(ле) а.5

3.0

2.5

2.25

II

4.0

3.0

TD-DFT B3LYP//TZ2P @ B3LYP geometries

ξ / cm⁻¹

 $\Delta E / eV$

Properties and applications

Dual fluorescence

Room-temperature phosphorescence

Examined system

Goals

Results

- conformational analysis of pristine molecule indicates that in solution various rotameric structures with similar populations may co-exist
- Iluorescence emission energies computed for different conformers change rather negligibly with changes in ester substituent arrangement and seem to correspond well to higher-energy signal in the experimental fluorescence spectrum:
 - > TD-DFT tends to overestimate it
 - > CCSD provides quantitative agreement with the measured value
 - > in each case $S_1 \rightarrow S_0$ corresponds to $\pi\pi^*$ transition within the coumarin ring
- ➢ DF effect cannot be explained based on co-existence of various rotameric structures → further research: aggregation, explicit solvent effects
- obtained SOC values indicate strong impact of the position of the carbonyl group in esther relative to the coumarin ring on ISC efficiency and thus occurence of RTP — further research: CCSD validation, phoshporescence emission studies

We gratefully acknowledge Polish high-performance computing infrastructure PLGrid (HPC Center: ACK Cyfronet AGH) for providing computer facilities and support within computational grant no. PLG/2024/017662.

Properties and applications

Dual fluorescence

Room-temperature phosphorescence

Examined system

Goals

Results

Outlook

Finding best interaction for systems

Program: ORCA Method: DOCKER (energy driven algorithm)

S_0 optimization

Program: Gaussian 16 Method: DFT Functional: B3LYP + D3BJ Basis set: 6-311++G(d,p) Environment: PCM (methanol, ε = 32.6)

S_1 optimization

Program: Gaussian 16/ORCA Method: (TD)-DFT Functional: B3LYP (+ D3BJ), ω B97X-D Basis set: 6-311++G(d,p) Environment: PCM (methanol, ϵ = 32.6)

Properties and applications

Dual fluorescence

Room-temperature phosphorescence

Examined system

Goals

Results

Properties and applications Ι

Dual fluorescence

Room-temperature phosphorescence

Examined system

Goals

Results

Outlook

S0

Properties and applications Ι

VI

1.920

Dual fluorescence

Room-temperature phosphorescence

Examined system

Goals

Results

 $\Delta E / kcal mol^{-1}$ dist. in Å, λ in nm

1.858

S0

1.674

 $\Delta E = 4.08$

2.525

S1

B3LYP

+ D3BJ

 $\Delta E = 13.25$

Properties and applications Ι

VI

1.920

Dual fluorescence

Room-temperature phosphorescence

Examined system

Goals

Results

ΔE / kcal·mol⁻¹ dist. in Å, λ in nm

S0

B3LYP

1.885

1.858

S1

B3LYP

ωB97X-D

 $\Delta E = 0.00$

 $\Delta E = 0.51$

1.674

 $\Delta E = 4.08$

Properties and applications

Dual fluorescence

Room-temperature phosphorescence

Examined system

Goals

Results

 ΔE / kcal·mol⁻¹ dist. in Å, λ in nm

S0

S1