

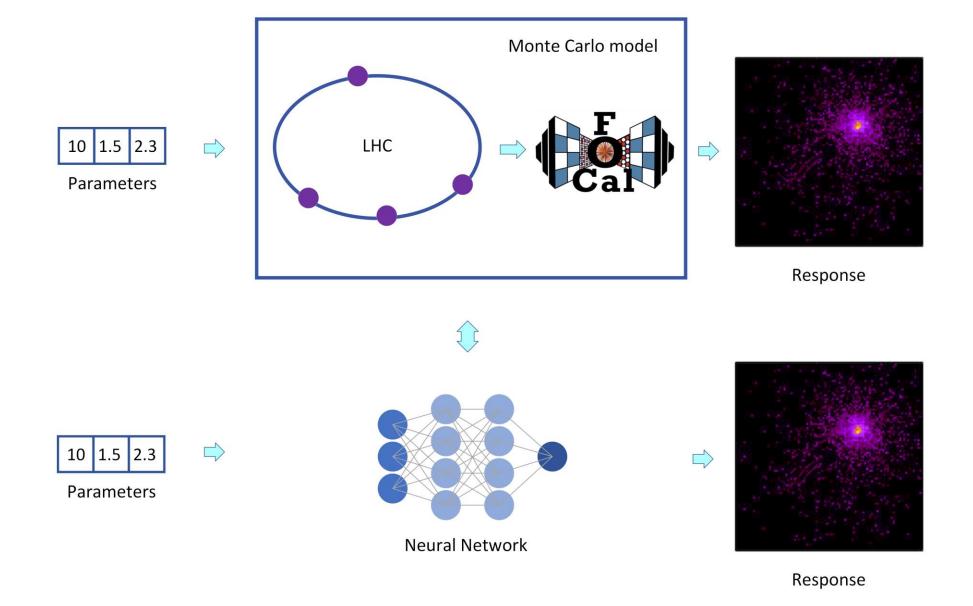
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

AGH UNIVERSITY OF KRAKOW

Fast Simulation of the FoCal-H detector with Machine Learning

Łukasz Dubiel, Piotr Ludynia, Emilia Majerz

What do we do?

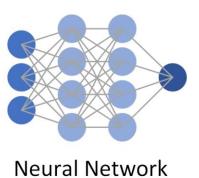


agh.edu.pl

Fast simulations

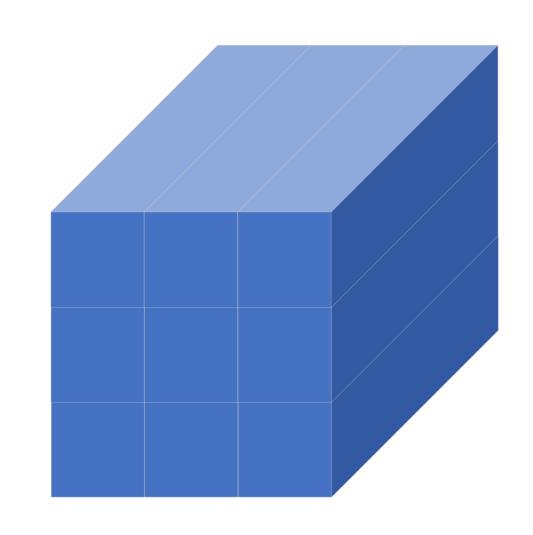
- Using a surrogate of the whole mathematical model or its part.
 - The most computationally-intensive part \rightarrow a faster surrogate.
- Fast simulations at CERN.
 - Existing approaches at different experiments.
 - DNN surrogates.
 - VAEs, GANs, NFs, Diffusion-based, Flow Matching.
- There's still a gap to fill!
 - Research done mostly on other experiments' calorimeters.
 - Physics-inspired machine learning.

Monte Carlo



FoCal

- FoCal consists of two detectors: electromagnetic (FoCal-E) and hadronic (FoCal-H).
- FoCal-H: copper tubes arranged in a grid of size ~ 100×100x110 cm³.
 - Needed for photon isolation and jet measurements.
- To be installed during LS3 for data-taking in 2027-2029.



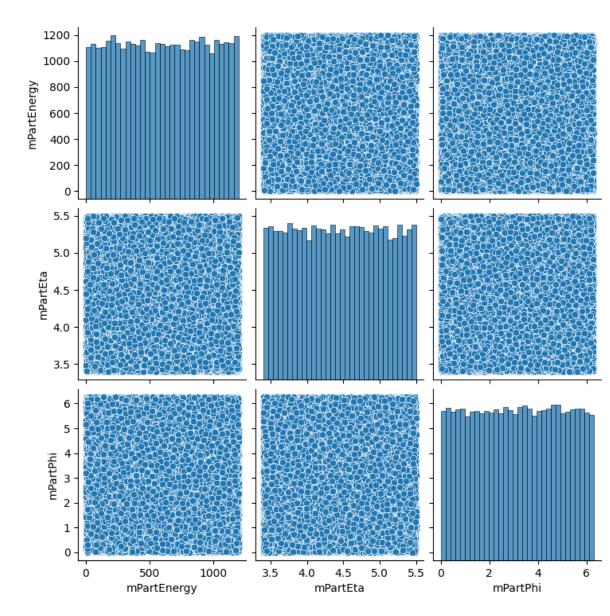
FoCal-H simulation

- Simulated using Monte Carlo approach.
 - Computationally expensive method!
- Detector measures energy deposited in each fiber by particles passing through it.
- Simulation of such structure is a perfect task for generative neural networks.

Dataset

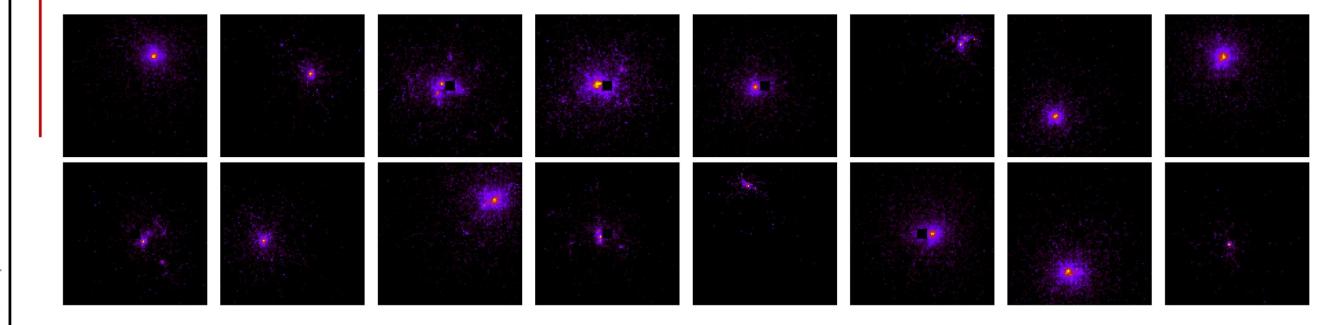
- 30 000 samples with simulation of π + particles.
- Three input features:
 - particle energy.
 - pseudorapidity η determines the polar angle θ with respect to the beam axis.
 - azimuthal angle φ describes the rotation around the beam axis.

 η and φ describe the kinematics of particles in a collider experiment.



Dataset

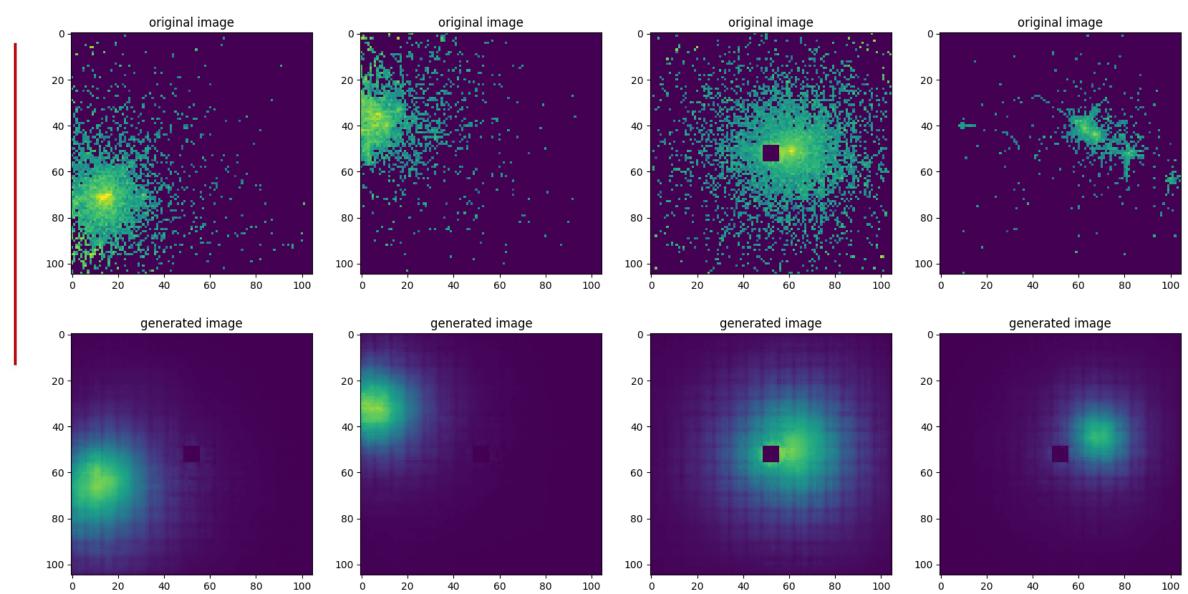
- Output: detector response.
- In this stage of the experiment, we work with 2-dimensional data.



Variational AutoEncoder (VAE) approach

- VAE is a standard and well-established image generation method.
- The main idea behind VAEs is to use an encoder that embeds a training image in latent space while maintaining the continuity of such representation.
- In our case we used the conditional variant of VAE.
- Conditional VAE includes particle properties as additional information for data generation.
- This method is prone to the effect of "blur" but roughly preserves the shape and location of particle shower readings.

VAE example results



Generative Adversarial Network (GAN) approach

- Often a baseline method for calorimeter simulation.
- The training process involves two networks a generator which learns to create realistic data that mimics the original training set, and a discriminator which learns to distinguish between real and fake data.
- Fast, yet usually more recent methods provide higher-quality results.
- Unstable training.

Diffusion approach

- Diffusion methods are particularly suitable for high-quality image generation.
- The main idea is to progressively increase noise in the image and learn to reverse this process.
- It is possible to control generation time and quality of samples by adjusting denoising pace.
- So far, conditional denoising diffusion implicit models (Cond-DDIM) were studied.

Theory-inspired approach

- Additional loss: distance between the simulated and expected shower center positions.
- Calculated using azimuthal angle and pseudorapidity:

$$egin{aligned} x &= z \cdot an\left(2 \arctan\left(e^{-\eta}
ight)
ight) \cdot \cos\phi \ \ y &= z \cdot an\left(2 \arctan\left(e^{-\eta}
ight)
ight) \cdot \sin\phi \end{aligned}$$

Currently under development.

Technological stack & hardware

- Python.
- TensorFlow, PyTorch, JAX, NumPy, scikit-learn and Uproot libraries.
- Weights & Biases platform.
- NVIDIA A100 GPU available on the Athena cluster.

Conclusions and next steps

- Promising results, especially with GANs and diffusion models.
- Further development and optimisation of the models.
- Theory-inspired approach.
- Other architectures: flow matching.

Acknowledgements

We want to thank our supervisors: prof. Witold Dzwinel and prof. Jacek Kitowski, and members of the ALICE FoCal team: Ionut Arsene, PhD and Hadi Hassan, PhD for their support in our work.

This work is co-financed and in part supported by the Ministry of Science and Higher Education (Agreement Nr 2023/WK/07) by the program entitled "PMW" and by the Ministry funds assigned to AGH University in Krakow.

The numerical experiment was possible through computing allocation on the Athena system at ACC Cyfronet AGH under the grant PLG/2024/017264.