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What do we do? 



Fast simulations 

• Using a surrogate of the whole mathematical model or its part. 
• The most computationally-intensive part → a faster surrogate. 

• Fast simulations at CERN. 
• Existing approaches at different experiments.

• DNN surrogates.
• VAEs, GANs, NFs, Diffusion-based, Flow Matching. 

• There's still a gap to fill! 
• Research done mostly on other experiments' calorimeters.

• Physics-inspired machine learning.



FoCal

• FoCal consists of two detectors: 
electromagnetic (FoCal-E) and hadronic 
(FoCal-H).

• FoCal-H: copper tubes arranged in a grid 
of size ~ 100×100x110 cm3.

• Needed for photon isolation and jet 
measurements.

• To be installed during LS3 for data-taking 
in 2027-2029.



FoCal-H simulation

• Simulated using Monte Carlo approach. 
• Computationally expensive method! 

• Detector measures energy deposited in each fiber by particles passing 
through it.

• Simulation of such structure is a perfect task for generative neural 
networks.



Dataset

• 30 000 samples with simulation of π+ 
particles.

• Three input features:
• particle energy.

• pseudorapidity η - determines the polar 
angle θ with respect to the beam axis.

• azimuthal angle ϕ - describes the rotation 
around the beam axis.

η and ϕ describe the kinematics of particles 
in a collider experiment.



Dataset

• Output: detector response.

• In this stage of the experiment, we work with 2-dimensional data.



Variational AutoEncoder (VAE) 
approach

• VAE is a standard and well-established image generation method.

• The main idea behind VAEs is to use an encoder that embeds a training 
image in latent space while maintaining the continuity of such 
representation.

• In our case we used the conditional variant of VAE.

• Conditional VAE includes particle properties as additional information 
for data generation.

• This method is prone to the effect of "blur" but roughly preserves the 
shape and location of particle shower readings.



VAE example results



Generative Adversarial Network (GAN) 
approach

• Often a baseline method for calorimeter simulation.

• The training process involves two networks – a generator which learns 
to create realistic data that mimics the original training set, and a 
discriminator which learns to distinguish between real and fake data.

• Fast, yet usually more recent methods provide higher-quality results.

• Unstable training.



GAN example results



Diffusion approach

• Diffusion methods are particularly suitable for high-quality image 
generation.

• The main idea is to progressively increase noise in the image and learn 
to reverse this process.

• It is possible to control generation time and quality of samples by 
adjusting denoising pace.

• So far, conditional denoising diffusion implicit models (Cond-DDIM) 
were studied.



Diffusion example results



Theory-inspired approach

• Additional loss: distance between the simulated and expected shower 
center positions.

• Calculated using azimuthal angle and pseudorapidity:

• Currently under development.



Technological stack & hardware

• Python.

• TensorFlow, PyTorch, JAX, NumPy, scikit-learn and Uproot libraries.

• Weights & Biases platform.

• NVIDIA A100 GPU available on the Athena cluster.



Conclusions and next steps

• Promising results, especially with GANs and diffusion models.

• Further development and optimisation of the models.

• Theory-inspired approach.

• Other architectures: flow matching.
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