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- What are event cameras?

- Event generation:

logI(t) — logI(t — At)| > C

-  Event:

Standard Camers

e

Standard Camera

p

Event Camera

Standard Camera

Event Camera

time

Kim, H., Leutenegger, S., & Davison, A. J. (2016). Real-time 3D reconstruction and 6-DoF tracking with an event

no events
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Advantages:
- High temporal resolution
- Low latency

- High dynamic range (120 dB)

- Reduction of redundant data

- Low power

Source: M. Gehrig, D. Scaramuzza "Recurrent Vision Transformers for Object Detection with Event
Cameras" IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, 2023
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Challenges:
Sparse space-time point cloud
No “absolute” brightness
Susceptible to noise
Low resolution

High cost and limited
availability

Source: D. Scaramuzza "Tutorial on Event-based Cameras", ETH Zurich, University of Zurich
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Event data filtering:
- Noisy event data
- High throughput

- Large datasets

- Algorithms evaluation
- FPGA resources

- Low-memory

Description of the problem
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Object classification:
- Event representation
- High throughput
- Large datasets

- Architectures evaluation

- Training

- Inference
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Algorithm:
- sensor subareas

- timestamp and interval
filtering

- interpolation of features
between subareas

Frequency Weights
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Filter Event 1
diffTs = 292 - 200 = 92

newTs =200 x 0.75 + 292 x 0.25 = 223
newl = 500 x 0.75 + 92 x 0.25 - 398

T11
|1 1 Event 1
x:19, yi6, pol: 1,
[} ts: 202
arh, W
bxl
Event 2
scale d21 22 X 33, y:57, pol: 0,
dy2| ts: 206
A4
To Ta2
I21 loo

Clean data
(prefiltered or
V2E
generated)

Data with
generated

artificial noise | -

Filter Event 2
diffTs = 296 - 150 = 146

*newTs = 160 x 0.75 + 296 x 0.25 = 194
newl=50x0.75+ 146 x 0.25 =74

Filter output

Generation

DIF algorithm

Distance-based Interpolation with

Noise

FPGA
architecture

AV4

> Comparison

V'
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Results:
- 445 MEPS
- 1280 x 720 resolution
- AUROC comparison
- Noise generation algorithm
- Different noise intensities
1.
Conference on Digital System Design (DSD). IEEE, 2022.
2.
Pattern Recognition Workshop. 2023.
3.

D

Library

DIF
Model
NNb
AEDNet
EDnCNN

2 3
Noise intensity [Hz/px]

Distance-based Interpolation with
Frequency Weights

Street

DIF
Model
NNb
AEDNet
EDnCNN

2 3
Noise intensity [Hz/px]

Kowalczyk, Marcin, and Tomasz Kryjak. "Hardware architecture for high throughput event visual data filtering with matrix of IR filters algorithm." 2022 25th Euromicro

Kowalczyk, Marcin, and Tomasz Kryjak. "Interpolation-Based Event Visual Data Filtering Algorithms." Proceedings of the IEEE/CVF Conference on Computer Vision and

Kowalczyk, Marcin, and Tomasz Kryjak “High Throughput Event Filtering: The Interpolation-based DIF Algorithm Hardware Architecture” - in Review
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Tools used:
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- V2E (Athena)

- Apptainer & Metavision, C++
(Ares)

MATLAB (Ares & Athena)

. P ROPHESCcC ‘\
- Python & PyTorch (Athena) MATLAB

O PyTorch rA
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utional Networks for Object
Classification

Algorithm:

- hardware-aware graph
generation module

- graph max pool operations for

complexity reduction

- evaluation on variety of
datasets for vision and audio
events

INPUT Context generation module
t t
event [x, y, t, p] BRAM
Normalisation Check for Save to
module duplicates Check context — . htext
Radius event [x, y, t, p]
Delay —* edges [x, y, t] [LEN]
Z PS
event read
PS->P1_
sending to PL
[,
a) event stream b) preprocessing ¢) graph generation

d) graph convolution
& pooling

PS

feature vector

PL->PS

fully-connected
layer

e) classification

1. Jeziorek, Kamil, and, Pinna, Andrea, and, Kryjak, Tomasz, “Memory-efficient graph convolutional networks for object classification and detection with event cameras”. In 2023
Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA) (pp. 160-165). IEEE.
2. Jeziorek, Kamil, et. al. “Optimising graph representation for hardware implementation of graph convolutional networks for event-based vision”. In International Workshop on
Design and Architecture for Signal and Image Processing (pp. 110-122). Cham: Springer Nature Switzerland.
3. Jeziorek, Kamil, et. al. Embedded graph convolutional networks for real-time event data processing on soc fpgas. arXiv preprint arXiv:2406.07318.
4.  Wzorek, Piotr, etl. al. Increasing the scalability of graph convolution for FPGA-implemented event-based vision. International Conference on Field Programmable Technology

(FPT), PhD Forum

5. Nakano, Hiroshi, et. al. Hardware-Accelerated Event-Graph Neural Networks for Low-Latency Time-Series Classification on SoC FPGA. International Symposium on Applied

Reconfigurable Computing (ARC)



agh.edu.pl

llI"IJJ clj Graph Convol

AG H UNIVERSITY

Results:
- 13.3 MEPS

- 50 times reduction in FLOPs
for last convolution

- reduction in graph
representation size

- accuracy similar to non-
hardware models

utional Networks for Object .z

Classification
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Tools used:

Python & PyTorch & PyTorch
Geometric for model
Implementation

Conda for environment

C++ with Pybind11 for graph
generation

PyTorch Lightning for model
wrapper with W&B for tracking
model

utional Networks for Object @

Classification o\

TN\
LI

s CYFRONET

O PyTorch &5 PyG

o PyTorch Lightning
Weights & Biases
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Thank you for your attention !!!

Marcin Kowalczyk
Embedded Vision Systems Research Group

@ kowalczyk@agh.edu.pl
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