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History of Gamma-ray bursts

@ The history of gamma-ray bursts began in the 1960s with the launch
of the Vela satellites.

Vela 4a Event — July 2, 1967
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Figure 2: Lightcurve of the first GRB
Figure 1: Artist’s impression of Vela detected by the military satellites Vela
5B satellite in orbit. 3 and 4.
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History of Gamma-ray bursts

o Gamma-ray bursts are distributed isotropically.
o Afterglows are necessary to measure the redshift and distance.
@ GRBs are the most energetic electromagnetic sources in the Universe.

2704 BATSE Gamma-Ray Bursts

»

Host galaxy
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pre 10° 16° 10% Figure 4: GRB 970228
Fluence, 50-300 keV (ergs cm?) was the first gamma-ray

burst for which an
afterglow was observed.

Figure 3: The map shows burst locations in
galactic coordinates.
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Two types of Gamma-ray bursts

e Gamma-ray bursts (GRBs) are classified into two categories:
o Long GRBs (> 25s)
o Short GRBs (< 2s)
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Figure 5: GRBs observed by the BATSE
instrument on the Compton Gamma-ray
Telescope.

Figure 6: Despite the classification
into short and long GRBs, each burst
is unique.
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Two types of Gamma-ray bursts

Gamma-ray bursts are classified into two categories:

@ Long GRBs are associated with the collapse of massive stars.

@ Short GRBs are associated with mergers of compact objects.

Figure 7: Collapse of a massive star. Figure 8: Merger of neutron stars.
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Long Gamma-ray Bursts

@ They originate from the collapse of massive, rotating stars, which
leads to the formation of a rapidly spinning black hole.

@ Modeling these phenomena requires considering a relativistic, highly
magnetized fluid within the framework of general relativity.

Small ic loops
fall towards accretion disk

ion disk anchors
the PNS’s field to the BH

y burst jet

Figure 9: Mass accretion onto a newly born black hole.
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HARM: High-Accuracy Relativistic Magnetohydrodynamics

HARM solves hyperbolic equations using the finite-volume
method. The code works on CPUs with MPI .

The code solves three equations: the continuity equation, the
conservation of energy and momentum, and the evolution of the
magnetic field:

Vu(put) =0, V,T) =0, V,(u'b” —u’b")=0. (1)

Additionally, using the CT (constrained transport) method ensures
that:
V-B=0 (2)

The complete stress—energy tensor is expressed as:

v 5 1 , )
Tio = (p+ u+ p+ b)ulu” + <p+ 2b2) g — b (3)
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A Numerical Scheme for GRMHD

@ |Initialize the grid and assign the primitive variables P to the grid cells.
P = (p,u,u', v?, v B, B B3) (4)
@ Interpolate the primitive variables at the cell edges P; and Pg, using a
linear slope limiter (MINMOD).
© Calculate the conserved variables U from P (analytically):
U=+—g(p®, T, T2, T3, T3, B!, B2, B?) (5)
© Calculate the HLLE fluxes:
CminFR + CmaxFL - Cmaxcmin(UR - UL)

F. 1= 6
I+% Cmax + Cmin ( )
© Evolve the conserved variables with additional source terms due to
curved spacetime:
0:U(P) = 0;Fi(P) + S(P) (7)

Piotr Ptonka KU KDM 2025



A Numerical Scheme for MHD with Self-Gravity

@ Evolve the magnetic field using the constrained transport (CT)
method.

@ Evolve the metric (a and Mpy) due to self-gravity and black hole
event horizon crossing, for mass:

t 2w pm
AI\/I(t):/O/O /O¢TgT;d9d¢dt’ (8)

rop2m pm
6M(t,r)—//0 /Oﬁrgdadgﬁdr'. (9)
M(t,r) = Mo + AM(t) + SM(t, r). (10)

Reconstruction of Primitive Variables from Conserved Variables:

@ Using the Newton-Raphson method, solve 5 nonlinear equations to
compute P from U. This is the core of HARM.

= = Y
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Models

Our goals:

@ For the first time, we study the influence of self-gravity in
three-dimensional models. We compare the evolution of the system -
with and without self-gravity - under different initial conditions,
including magnetic field configuration and strength, internal
energy perturbations, black hole mass and spin, as well as envelope
mass and angular momentum.

V.

@ The resolution of models is 256x128x64 = 2 097 152 cells.
e Twelve models were computed (6 with and 6 without SG).

Model CPU Hours
With self-gravity ~ 70,000
Without self-gravity | ~ 40,000

Table 1: Comparison of computational requirements for one model on the ARES
supercomputer using 32-node calculations.
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Accretion rate

@ Models with self-gravity exhibit greater variability in the accretion
rate, which is more consistent with observations of prompt gamma-ray

burst emissions.
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Figure 11: Energy accretion rate E for models with and without self-gravity under
identical initial conditions (left) and observed prompt emission from GRBs (right).
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Black-hole mass and spin evolution

@ Models with self-gravity evolve faster than models without self-gravity.
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Figure 12: Evolution of the black hole mass Mgy (left) and the spin parameter a
(right) for models with and without self-gravity.
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Pressure inhomogeneities

@ In the self-gravity models, pressure instabilities emerge when the
energy accretion rate is the highest. Notice also that perturbations are
more clearly visible in the model without self-gravity.

Pressure Distribution for t =0.133[s] Pressure Distribution for t =0.133[s]
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Figure 13: Comparison of non-self-gravitating (left) and self-gravitating (right)
cases, evolved from the same initial conditions.
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Jet Formation under Self-Gravity

@ This is the first study to explore the formation of jets in the context of
self-gravity effects.
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Figure 14: The polar slices showing the jet.
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Spiral structures under Self-Gravity

@ The creation of spiral structures in self-gravity and non-self-gravity
models can be compared using 3D simulations.

Density Distribution for t =0.111[s] Pressure Distribution for t = 0.089[s]
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Figure 15: The equatorial slices demonstrate the presence of spiral structures.
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Conclusions

@ Three-dimensional General Relativistic Magnetohydrodynamical
simulations are computationally expensive.

@ The evolution of the black hole's spin and mass is both quantitatively
and qualitatively affected by self-gravity, confirming the findings
from our previous 2D studies.

@ In the self-gravity models, pressure instabilities appear when the
energy accretion rate is the highest.

@ The accretion rate variability is stronger in self-gravitating collapsars
and may produce detectable signals in GRB prompt emission.

@ 3D dimensional models, even though computationally expensive, show
more details about astrophysical processes.
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Thank You for Your Attention!
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