QHyper: an integration library for hybrid quantum-classical optimization

for hybrid quantum-classical optimization
Тотаsz Lamża^{1,2}, Justyna Zawalska^{1,2}, Kacper Jurek^{1,2}, Mariusz Sterzel², Katarzyna Rycerz^{1,2}

CYFRONET

¹AGH University of Krakow, Faculty of Computer Science, Poland ²Academic Computer Center CYFRONET AGH, Poland

QHyper is a Python library that provides a unified interface for experimenting with gate-based, quantum annealing, and classical optimization solvers. It allows users to specify combinatorial optimization problems, select solvers, manage problem hyperparameters, and standardize output for ease of use.

1. MOTIVATION

- Lack of a common programming interface for defining and solving a combinatorial problem using various optimization algorithms.
- Every time a user wants to check optimization results from a new type of solver, they are forced to program it independently.

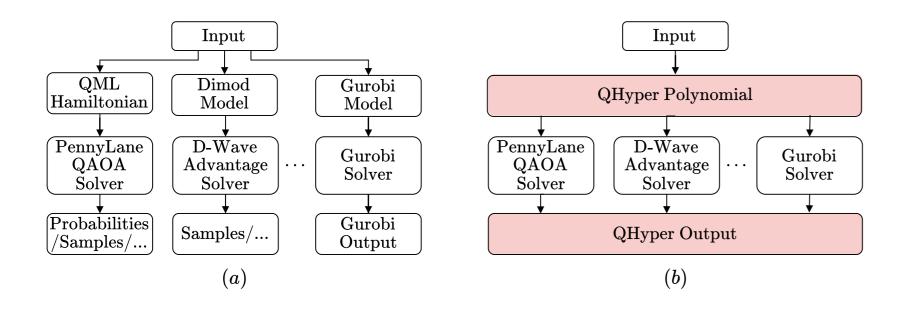


Figure 1. User effort when forced to program each optimization software (a) independently (b) and with common QHyper interface.

2. FUNCTIONAL INSIGHTS

- Unification: Provides a single platform for hybrid quantum-classical optimization.
- Flexibility: Supports diverse solvers and problem formulations.
- Efficiency: Simplifies experimentation and comparison of optimization techniques.
- Extensibility: Enables easy customization for varied research needs.
- Accessibility: Lowers barriers for researchers by standardizing workflows.

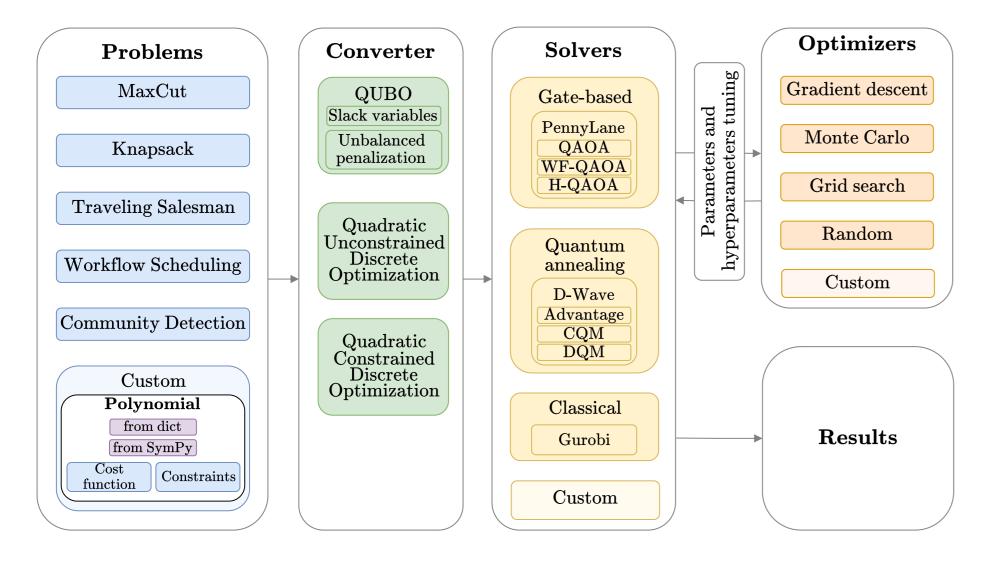


Figure 2. The main components of QHyper's architecture.

3. EVALUATION

Table 1. A comparison of the total execution times for the direct PennyLane QAOA implementation and QHyper QAOA implementation using PennyLane for the MaxCut problem.

Graph	PennyLane	PennyLane
G(N, E)	[s]	+QHyper [s]
N = 5, E = 5	1.29 ± 0.02	1.42 ± 0.06
N = 10, E = 25	5.66 ± 0.07	5.8 ± 0.03
N = 10, E = 30	6.8 ± 0.3	6.8 ± 0.1
N = 12, E = 66	19.3 ± 0.4	20.0 ± 0.3
N = 15, E = 50	30.2 ± 0.6	30.0 ± 0.4
N = 15, E = 105	63 ± 1	65 ± 2

Table 2. A comparison of execution times for the direct implementation on D-Wave Advantage/Gurobi and the QHyper implementation using D-Wave Advantage/Gurobi Optimizer for the MaxCut problem.

Graph	Advantage	Advantage	Gurobi	Gurobi
G(N,E)	[s]	+QHyper [s]	[s]	+QHyper [s]
(5,5)	0.73 ± 0.07	0.8 ± 0.1	$(4\pm 2)e - 4$	$(2\pm6)e-2$
(10, 25)	0.8 ± 0.2	0.8 ± 0.2	$(3.1 \pm 0.3)e - 3$	$(4.57 \pm 0.03)e - 3$
(15, 50)	0.76 ± 0.06	0.8 ± 0.2	$(8.7 \pm 0.4)e - 3$	$(8.8 \pm 0.1)e - 3$
(20, 100)	1.0 ± 0.2	0.89 ± 0.07	$(1.845 \pm 0.006)e - 2$	$(2.19 \pm 0.003)e - 2$
(25, 200)	1.4 ± 0.5	1.4 ± 0.3	$(2.11 \pm 0.01)e - 1$	$(1.9 \pm 0.2)e - 1$
(30,400)	2.4 ± 0.6	2.3 ± 0.4	$(1.515 \pm 0.006)e1$	$(1.521 \pm 0.008)e1$
(35, 595)	4 ± 1	5 ± 2	$(3.33 \pm 0.04)e - 1$	$(3.96 \pm 0.02)e - 1$

4. USAGE

1. Install the QHyper library

pip install qhyper

2. Import an optimization problem

from QHyper.problems.knapsack import KnapsackProblem

- 3. Create a solver
 - 3.1 Python syntax

```
(b) from QHyper.solvers.quantum_annealing.dwave import Advantage solver = Advantage(problem=CustomProblem(), penalty_weights=[1, 2.5, 2.5])
```

```
(c) | from QHyper.solvers.classical.gurobi import Gurobi solver = Gurobi(problem=CustomProblem())
```

3.2 YAML syntax

```
(a) problem:
    type: CustomProblem
    solver:
    category: gate_based
    platform: pennylane
    name: QAOA
    layers: 5
    gamma:
        init: [0.25, 0.25, 0.25, 0.25, 0.25] (c)
    beta:
        init: [-0.5, -0.5, -0.5, -0.5]
    penalty_weights: [1, 2.5, 2.5]
    optimizer:
        type: QmlGradientDescent
    name: adam
```

problem:
type: CustomProblem
solver:
category: classical
platform: gurobi
name: Gurobi

4. Run experiments

```
solver_results = solver.solve()
```

5. Show the results

```
from QHyper.util import sort_solver_results

sorted_results = sort_solver_results(
    solver_results.probabilities, limit_results=5)
print(sorted_results.dtype.names)
for result in sorted_results:
    print(result)

# ('x0', 'x1', 'x2', 'x3', 'x4', 'probability')
# (1, 1, 0, 0, 1, 0.24827694)
# (0, 1, 1, 0, 1, 0.18271937)
# (1, 0, 1, 0, 1, 0.15528488)
# (1, 1, 1, 1, 1, 0.03339847)
```

5. IMPORTANT LINKS

- Documentation & tutorials: https://qhyper.readthedocs.io
- Code: https://github.com/qc-lab/QHyper
- Demo: https://codeocean.com/capsule/1274124/tree/v1

References

[1] T. Lamża, J. Zawalska, K. Jurek, M. Sterzel, and K. Rycerz. (2024). "QHyper: An Integration Library for Hybrid Quantum-Classical Optimization." arXiv preprint. https://arxiv.org/abs/2409.15926.
[2] T. Lamża, J. Zawalska, M. Sterzel, and K. Rycerz. (2023). Software Aided Approach for Constrained Optimization Based on QAOA Modifications. In: Computational Science – ICCS 2023. https://doi.org/10.1007/978-3-031-36030-5 10.

The research presented in this paper received support from the funds assigned by Polish Ministry of Science and Technology to AGH University. We gratefully acknowledge Polish high-performance computing infrastructure PLGrid (HPC Center: ACK Cyfronet AGH) for providing computer facilities and support within computational grant no. PLG/2024/017208.